Skip to main content

Advertisement

Log in

Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To modify the surface of denture base material by coating it with cinnamon-laden nanofibers to reduce Candida albicans (C. albicans) adhesion and/or proliferation.

Materials and methods

Heat-cured poly(methyl methacrylate) (PMMA) specimens were processed and coated, or not, with cinnamon-laden polymeric nanofibers (20 or 40 wt.% of cinnamon relative to the total polymer weight). Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses of the nanofibers were performed. Antifungal activity was assessed through agar diffusion and colony-forming unit (CFU/mL) assays. Representative SEM morphological analysis was carried out to observe the presence/absence of C. albicans on the fibers. Alamar blue assay was used to determine cell toxicity. Analysis of variance and the Tukey’s test were used to analyze the data (α = 0.05).

Results

SEM imaging revealed nanofibers with adequate (i.e., bead-free) morphological characteristics and uniform microstructure. FTIR confirmed cinnamon incorporation. The cinnamon-laden nanofibers led to growth inhibition of C. albicans. Viable fungal counts support a significant reduction on CFU/mL also directly related to cinnamon concentration (40 wt.%: mean log 6.17 CFU/mL < 20 wt.%: mean log 7.12 CFU/mL), which agrees with the SEM images. Cinnamon-laden nanofibers at 40 wt.% led to increased cell death.

Conclusions

The deposition of 20 wt.% cinnamon-laden nanofibers onto PMMA surfaces led to a significant reduction of the adhesive and/or proliferative ability of C. albicans, while maintaining epithelial cells’ viability.

Clinical relevance

The high recurrence rates of denture stomatitis are associated with patient non-adherence to treatments and contaminated prostheses use. Here, we provide the non-patients’ cooperation sensible method, which possesses antifungal action, hence improving treatment effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pavičić D, Braut A, Pezelj-Ribarić S, Glažar I, Lajnert V, Mišković I (2017) Urek MM (2017) Predictors of oral mucosal lesions among removable prosthesis wearers. Period Biol 119:181–187

    Article  Google Scholar 

  2. Reinhardt LC, Nascente PS, Ribeiro JS, Guimarães VBS, Etges A, Lund RG (2020) Sensitivity to antifungals by Candida spp samples isolated from cases of chronic atrophic candidiasis (CAC). Braz J Biol 80:266–272

    Article  PubMed  Google Scholar 

  3. Chowdhary R, Chandraker NK (2011) Clinical survey of denture care in denture-wearing edentulous patients of Indian population. Geriatr Gerontol Int 11:191–195

    Article  PubMed  Google Scholar 

  4. Preciado A, Del Río J, Suárez-García M-J, Montero J, Lynch CD, Castillo-Oyagüe R (2012) Differences in impact of patient and prosthetic characteristics on oral health-related quality of life among implant-retained overdenture wearers. J Dent 40:857–865

    Article  PubMed  Google Scholar 

  5. Martori E, Ayuso-Montero R, Willaert E, Viñas M, Peraire M, Martinez-Gomis J (2017) Status of removable dentures and relationship with oral candida-associated factors in a geriatric population in Catalonia. J Prosthodont 26:370–375

    Article  PubMed  Google Scholar 

  6. Figueiral MH, Azul A, Pinto E, Fonseca PA, Branco FM, Scully C (2007) Denture-related stomatitis: identification of aetiological and predisposing factors—a large cohort. J Oral Rehabil 34:448–455

    Article  PubMed  Google Scholar 

  7. Hannah VE, O’Donnell L, Robertson D, Ramage G (2017) Denture stomatitis: causes, cures and prevention. Prim Dent J 6:46–51

    Article  PubMed  Google Scholar 

  8. Chandra J, Mukherjee PK (2015) Candida biofilms: development, architecture, and resistance. Microbiol Spectr 3(10):1128

    Google Scholar 

  9. Rodrigues CF, Rodrigues ME, Henriques MCR (2019) Promising alternative therapeutics for oral candidiasis. Curr Med Chem 26:2515–2528

    Article  PubMed  Google Scholar 

  10. Hilgert JB, do Amaral Giordani JM, de Souza RF, Wendland EMDR, D’Avilla OP, Hugo FN (2016) Interventions for the management of denture stomatitis: a systematic review and meta-analysis. J Am Geriatr Soc 64:2539–2545

    Article  PubMed  Google Scholar 

  11. de Araujo Oliveira J, da Silva ICG, Trindade LA, Lima EO, Carlo HL, Cavalcanti AL, Castro RD (2014) Safety and tolerability of essential oil from cinnamomum zeylanicum blume leaves with action on oral candidosis and its effect on the physical properties of the acrylic resin. Evid Based Complement Alternat Med 2014:325670

    Google Scholar 

  12. Gad MM, Fouda SM (2020) Current perspectives and the future of Candida albicans-associated denture stomatitis treatment. Dent Med Probl 57:95–102

    Article  PubMed  Google Scholar 

  13. Bottino MC, Münchow EA, Albuquerque MTP, Kamocki K, Shahi R, Gregory RL, Chu GT, Pankajakshan D (2017) Tetracycline-incorporated polymer nanofibers as a potential dental implant surface modifier. J Biomed Mater Res B Appl Biomater 105:2085–2092

    Article  PubMed  Google Scholar 

  14. Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92:963–969

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li L, Wang L, Xu Y, Lv L (2012) Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro. Arch Orthop Trauma Surg 132:897–903

    Article  PubMed  Google Scholar 

  16. Singh HB, Srivastava M, Singh AB, Srivastava AK (1995) Cinnamon bark oil, a potent fungitoxicant against fungi causing respiratory tract mycoses. Allergy 50:995–999

    Article  PubMed  Google Scholar 

  17. Quale JM, Landman D, Zaman MM, Burney S, Sathe SS (1996) In vitro activity of Cinnamomum zeylanicum against azole resistant and sensitive Candida species and a pilot study of cinnamon for oral candidiasis. Am J Chin Med 24:103–109

    Article  PubMed  Google Scholar 

  18. Lin L, Dai Y, Cui H (2017) Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr Polym 178:131–140

    Article  PubMed  Google Scholar 

  19. Wen P, Zhu D-H, Feng K, Liu F-J, Lou W-Y, Li N, Zong M-H, Wu H (2016) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196:996–1004

    Article  PubMed  Google Scholar 

  20. Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ, Bressiani AHA (2015) A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med 9:E116–E123

    Article  PubMed  Google Scholar 

  21. Palasuk J, Kamocki K, Hippenmeyer L, Platt JA, Spolnik KJ, Gregory RL, Bottino MC (2014) Bimix antimicrobial scaffolds for regenerative endodontics. J Endod 40:1879–1884

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL (2014) Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 18:2151–2158

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muchuweti M, Kativu E, Mupure CH, Chidewe C, Ndhlala AR, Benhura MAN (2007) Phenolic composition and antioxidant properties of some spices. Am J Food Technol 2:414–420

    Article  Google Scholar 

  24. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2000) Chemical composition of the flower oil of Cinnamomum zeylanicum blume. J Agric Food Chem 48:4294–4295

    Article  PubMed  Google Scholar 

  25. Gupta C, Kumari A, Garg AP, Catanzaro R, Marotta F (2011) Comparative study of cinnamon oil and clove oil on some oral microbiota. Acta Biomed 82:197–199

    PubMed  Google Scholar 

  26. de Fatima Dantas de Almeida L, de Paula JF, de Almeida RVD, de Williams DW, Hebling J, Cavalcanti YW (2016) Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol Scand 74:393–398

    Article  Google Scholar 

  27. Bakhtiari S, Jafari S, Taheri JB, Kashi TSJ, Namazi Z, Iman M, Poorberafeyi M (2019) The effects of Cinnamaldehyde (Cinnamon Derivatives) and Nystatin on Candida albicans and Candida Glabrata. J Med Sci 7:1067–1070

    Google Scholar 

  28. Veilleux M-P, Grenier D (2019) Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells. BMC Complement Altern Med 19:303

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wendakoon CN, Sakaguchi M (1995) Inhibition of amino acid decarboxylase activity of enterobacter aerogenes by active components in spices. J Food Prot 58:280–283

    Article  PubMed  Google Scholar 

  30. Essid R, Hammami M, Gharbi D, Karkouch I, Hamouda TB, Elkahoui S, Limam F, Tabbene O (2017) Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl Microbiol Biotechnol 101:6993–7006

    Article  PubMed  Google Scholar 

  31. Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM (2018) Effectiveness of phytoactive molecules on transcriptional expression, biofilm matrix, and cell wall components of Candida glabrata and its clinical isolates. ACS Omega 3:12201–12214

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ranasinghe L, Jayawardena B, Abeywickrama K (2002) Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M. Perry against crown rot and anthracnose pathogens isolated from banana. Lett Appl Microbiol 35:208–211

    Article  PubMed  Google Scholar 

  33. Salehi M, Niyakan M, Ehterami A, Haghi-Daredeh S, Nazarnezhad S, Abbaszadeh-Goudarzi G, Vaez A, Hashemi SF, Rezaei N (2020) Mousavi SR (2020) Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomed Eng Lett 10:149–161

    Article  PubMed  Google Scholar 

  34. Daemi A, Lotfi M, Farahpour MR, Oryan A, Ghayour SJ, Sonboli A (2019) Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice. Pharm Biol 57:799–806

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deyno S, Eneyew K, Seyfe S, Tuyiringire N, Peter EL, Muluye RA, Tolo CU, Ogwang PE (2019) Efficacy and safety of cinnamon in type 2 diabetes mellitus and pre-diabetes patients: a meta-analysis and meta-regression. Diabetes Res Clin Pract 156:107815

    Article  PubMed  Google Scholar 

  36. Sadeghi S, Davoodvandi A, Pourhanifeh MH, Sharifi N, Arefnezhad R, Sahebnasagh R, Moghadam SA, Sahebkar A, Mirzaei H (2019) Anti-cancer effects of cinnamon: insights into its apoptosis effects. Eur J Med Chem 178:131–140

    Article  PubMed  Google Scholar 

  37. Javadi B (2018) Diet therapy for cancer prevention and treatment based on traditional Persian medicine. Nutr Cancer 70:376–403

    Article  PubMed  Google Scholar 

  38. Hariri M, Ghiasvand R (2016) Cinnamon and chronic diseases. Adv Exp Med Biol 929:1–24

    Article  PubMed  Google Scholar 

  39. Liu X, Han Y, Peng K, Liu Y, Li J, Liu H (2011) Effect of traditional Chinese medicinal herbs on Candida spp. from patients with HIV/AIDS. Adv Dent Res 23:56–60

    Article  PubMed  Google Scholar 

  40. Fink RC, Roschek BJ, Alberte RS (2009) HIV type-1 entry inhibitors with a new mode of action. Antivir Chem Chemother 19:243–255

    Article  PubMed  Google Scholar 

  41. Javed I, Faisal I, Rahman Z, Khan MZ, Muhammad F, Aslan B, Ahmad M, Shahzadi A (2012) Lipid lowering effect of Cinnamomum zeylanicum in hyperlipidaemic albino rabbits. Pak J Pharm Sci 25:141–147

    PubMed  Google Scholar 

  42. Byrne A, Makadia S, Sutherland A, Miller M (2017) Optimizing non-pharmacologic management of hypertriglyceridemia. Arch Med Res 48:483–487

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tuzcu Z, Orhan C, Sahin N, Juturu V, Sahin K (2017) Cinnamon polyphenol extract inhibits hyperlipidemia and inflammation by modulation of transcription factors in high-fat diet-fed rats. Oxid Med Cell Longev 2017:1583098

    Article  PubMed  PubMed Central  Google Scholar 

  44. Badalzadeh R, Shaghaghi M, Mohammadi M, Dehghan G, Mohammadi Z (2014) The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats. Adv Pharm Bull 4:515–520

    PubMed  PubMed Central  Google Scholar 

  45. Pender DN, Crawford PF, Clark JM, Crawford AJ, Prats AA, Shah SA (2018) Effect of water-soluble cinnamon extract on electrocardiographic parameters: an analysis of the Cinnamon trial. Complement Ther Med 41:302–305

    Article  PubMed  Google Scholar 

  46. Sedighi M, Nazari A, Faghihi M, Rafieian-Kopaei M, Karimi A, Moghimian M, Mozaffarpur SA, Rashidipour M, Namdari M, Cheraghi M, Rasoulian B (2018) Protective effects of cinnamon bark extract against ischemia-reperfusion injury and arrhythmias in rat. Phytother Res 32:1983–1991

    Article  PubMed  Google Scholar 

  47. Kanth MR, Prakash AR, Sreenath G, Reddy VS, Huldah S (2016) Efficacy of specific plant products on microorganisms causing dental caries. J Clin Diagn Res 10:ZM01-3

    PubMed  PubMed Central  Google Scholar 

  48. Wiwattanarattanabut K, Choonharuangdej S, Srithavaj T (2017) In vitro anti-cariogenic plaque effects of essential oils extracted from culinary herbs. J Clin Diagn Res 11:DC30-5

    PubMed  PubMed Central  Google Scholar 

  49. Alshahrani AM, Gregory RL (2020) In vitro Cariostatic effects of cinnamon water extract on nicotine-induced Streptococcus mutans biofilm. BMC Complement Med Ther 20:45

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taguchi Y, Hasumi Y, Abe S, Nishiyama Y (2013) The effect of cinnamaldehyde on the growth and the morphology of Candida albicans. Med Mol Morphol 46:8–13

    Article  PubMed  Google Scholar 

  51. de Lucena Rangel M, de Aquino SG, de Lima JM, Castellano LR, de Castro RD (2018) In vitro effect of Cinnamomum zeylanicum Blume Essential Oil on Candida spp. involved in oral infections. Evid Based Complement Alternat Med 2018:4045013

    Google Scholar 

  52. LeBel G, Haas B, Adam A-A, Veilleux M-P, Lagha AB, Grenier D (2017) Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Arch Oral Biol 83:97–104

    Article  PubMed  Google Scholar 

  53. Kallel I, Hadrich B, Gargouri B, Chaabane A, Lassoued S, Bayoudh A, Messaoud EB (2019) Optimization of cinnamon (Cinnamomum zeylanicum Blume) essential oil extraction: evaluation of antioxidant and antiproliferative effects. Evid Based Complement Alternat Med 2019:6498347

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu S-C, Qin C-C, Yu M, Dong R-H, Yan X, Zhao H, Han W-P, Zhang H-D, Long Y-Z (2015) A battery-operated portable handheld electrospinning apparatus. Nanoscale 7:12351–12355

    Article  PubMed  Google Scholar 

  55. Mouthuy P-A, Groszkowski L, Ye H (2015) Performances of a portable electrospinning apparatus. Biotechnol Lett 37:1107–1116

    Article  PubMed  PubMed Central  Google Scholar 

  56. Haik J, Kornhaber R, Blal B, Harats M (2017) The feasibility of a handheld electrospinning device for the application of nanofibrous wound dressings. Adv Wound Care 6:166–174

    Article  Google Scholar 

  57. Revia RA, Wagner BA (2019) Zhang M (2019) A portable electrospinner for nanofiber synthesis and its application for cosmetic treatment of alopecia. Nanomater 9:1317

    Article  Google Scholar 

  58. Yan X, Yu M, Ramakrishna S, Russel SJ, Long Y-Z (2019) Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale 11:19166–19178

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.C.B. acknowledges the National Institutes of Health (NIH, National Institute of Dental and Craniofacial Research/NIDCR) (Grants K08DE023552 and R01DE026578). J.S.R. would like to thank Coordination for the Improvement of Higher Education Personnel (CAPES; code 001) Brazil for the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Kantorski KZ, Valandro LF, Bottino MC. Data curation: Ribeiro JS, Bordini EAF, Polasani RR. Formal analysis: Ribeiro JS. Investigation: Ribeiro JS. Methodology: Ribeiro JS, Bordini EAF, Polasani RR. Project administration: Kantorski KZ, Valandro LF, Bottino MC. Resources: Bottino MC. Supervision: Bottino MC. Validation: Kantorski KZ. Visualization: Valandro LF. Writing—original draft: Ribeiro JS; Polasani RR. Writing—review and editing: Pereira GKR, Squarize CH, Kantorski KZ, Valandro LF, Bottino MC.

Corresponding author

Correspondence to Marco Cícero Bottino.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent was not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J.S., Bordini, E.A.F., Pereira, G.K.R. et al. Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials. Clin Oral Invest 26, 3697–3706 (2022). https://doi.org/10.1007/s00784-021-04341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04341-5

Keywords

Navigation