Skip to main content

Advertisement

Log in

Proteomic analysis of human dental pulp in different clinical diagnosis

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The present study aimed to identify proteins obtained from pulp tissue and correlate with each clinical diagnosis (healthy pulp, inflamed pulp, and necrotic pulp).

Materials and methods

A total of forty-five molars were used. Three biological replicas were evaluated. Lysis and sonication were used for protein extraction. Protein quantification was assessed by using the Bradford technique, and shotgun proteome analysis was performed by nanoUPLC-MSE using a Synapt G2 mass spectrometer. Mass spectra data were processed using the Waters PLGS software, and protein identification was done using the human Uniprot database appended to the PLGS search engine.

Results

A total of 123 different proteins were identified in all evaluated pulp conditions. Among these, 66 proteins were observed for healthy pulp, 66 for inflamed pulp, and 91 for necrotic pulp. Most protein identification was related to immune response, multi-organism process, platelet activation, and stress in inflamed pulp samples compared to healthy pulp. Proteins related to cellular component organization or biogenesis, developmental process, growth, immune response, multi-organism process, response to stimulus, signaling, stress, and transport were identified in cases of apical periodontitis compared to inflamed pulp.

Conclusions

The progression of the disease to inflamed pulp promoted a high abundance of proteins related to the immune system and stress. Comparing the necrotic pulp with inflamed pulp conditions, a high abundance of proteins was noticed related to metabolism, transport, and response between organisms.

Clinical relevance

This finding may assist in future studies of new markers, understanding of tissue engineering, and development of future products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kawashima N, Okiji T (2016) Odontoblasts: specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom (Kyoto) 56:144–153. https://doi.org/10.1111/cga.12169

    Article  Google Scholar 

  2. Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  3. Abbott PV, Yu C (2007) A clinical classification of the status of the pulp and the root canal system. Aust Dent J 52:S17–S31

    Article  PubMed  Google Scholar 

  4. Farges JC, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ, Cooper PR (2015) Dental pulp defence and repair mechanisms in dental caries. Mediators Inflamm 2015:230251–230216. https://doi.org/10.1155/2015/230251

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu C, Abbott PV (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52:S4–S16

    Article  PubMed  Google Scholar 

  6. Izumi T, Kobayashi I, Okamura K, Sakai H (1995) Immunohistochemical study on the immunocompetent cells of the pulp in human non-carious and carious teeth. Arch Oral Biol 40:609–614

    Article  PubMed  Google Scholar 

  7. Bletsa A, Berggreen E, Fristad I, Tenstad O, Wiig H (2006) Cytokine signalling in rat pulp interstitial fluid and transcapillary fluid exchange during lipopolysaccharide-induced acute inflammation. J Physiol 573:225–236. https://doi.org/10.1113/jphysiol.2006.104711

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mejare IA, Axelsson S, Davidson T, Frisk F, Hakeberg M, Kvist T, Norlund A, Petersson A, Portenier I, Sandberg H, Tranaeus S, Bergenholtz G (2012) Diagnosis of the condition of the dental pulp: a systematic review. Int Endod J 45:597–613. https://doi.org/10.1111/j.1365-2591.2012.02016.x

    Article  PubMed  Google Scholar 

  9. Nair PN (2004) Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med 15:348–381

    Article  PubMed  Google Scholar 

  10. Siqueira JF Jr, Rocas IN (2007) Bacterial pathogenesis and mediators in apical periodontitis. Braz Dent J 18:267–280

    Article  PubMed  Google Scholar 

  11. Pecora GE, Pecora CN (2015) A new dimension in endo surgery: micro endo surgery. J Conserv Dent 18:7–14. https://doi.org/10.4103/0972-0707.148864

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atmeh AR, Watson TF (2016) Root dentine and endodontic instrumentation: cutting edge microscopic imaging. Interface Focus 6:20150113. https://doi.org/10.1098/rsfs.2015.0113

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aminsobhani M, Khalatbari MS, Meraji N, Ghorbanzadeh A, Sadri E (2016) Evaluation of the fractured surface of five endodontic rotary instruments: a metallurgical study. Iran Endod J 11:286–292. https://doi.org/10.22037/iej.2016.6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yared G (2008) Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 41:339–344. https://doi.org/10.1111/j.1365-2591.2007.01351.x

    Article  PubMed  Google Scholar 

  15. Prado MC, Leal F, Simao RA, Gusman H, do Prado M (2017) The use of auxiliary devices during irrigation to increase the cleaning ability of a chelating agent. Restor Dent Endod 42:105–110. https://doi.org/10.5395/rde.2017.42.2.105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rezende TM, Lima SM, Petriz BA, Silva ON, Freire MS, Franco OL (2013) Dentistry proteomics: from laboratory development to clinical practice. J Cell Physiol 228:2271–2284. https://doi.org/10.1002/jcp.24410

    Article  PubMed  Google Scholar 

  17. Rechenberg DK, Galicia JC, Peters OA (2016) Biological markers for pulpal inflammation: a systematic review. PLoS One 11:e0167289. https://doi.org/10.1371/journal.pone.0167289

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yue W, Kim S, Jung HS, Lee JM, Lee S, Kim E (2019) Differential protein expression in human dental pulp: comparison of healthy, inflamed, and traumatic pulp. J Clin Med 8. https://doi.org/10.3390/jcm8081234

  19. Provenzano JC, Siqueira JF Jr, Rocas IN, Domingues RR, Paes Leme AF, Silva MR (2013) Metaproteome analysis of endodontic infections in association with different clinical conditions. PLoS One 8:e76108. https://doi.org/10.1371/journal.pone.0076108

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eckhardt A, Jagr M, Pataridis S, Miksik I (2014) Proteomic analysis of human tooth pulp: proteomics of human tooth. J Endod 40:1961–1966. https://doi.org/10.1016/j.joen.2014.07.001

    Article  PubMed  Google Scholar 

  21. Eckhard U, Marino G, Abbey SR, Tharmarajah G, Matthew I, Overall CM (2015) The human dental pulp proteome and n-terminome: levering the unexplored potential of semitryptic peptides enriched by TAILS to identify missing proteins in the human proteome project in underexplored tissues. J Proteome Res 14:3568–3582. https://doi.org/10.1021/acs.jproteome.5b00579

    Article  PubMed  Google Scholar 

  22. Belda-Ferre P, Williamson J, Simon-Soro A, Artacho A, Jensen ON, Mira A (2015) The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics 15:3497–3507. https://doi.org/10.1002/pmic.201400600

    Article  PubMed  Google Scholar 

  23. Costa MG, Pazzini CA, Pantuzo MC, Jorge ML, Marques LS (2013) Is there justification for prophylactic extraction of third molars? A systematic review. Braz Oral Res 27:183–188

    Article  PubMed  Google Scholar 

  24. Hupp JR (2007) Legal implications of third molar removal. Oral Maxillofac Surg Clin North Am 19:129–36, viii. https://doi.org/10.1016/j.coms.2006.11.008

    Article  PubMed  Google Scholar 

  25. Lopes V, Mumenya R, Feinmann C, Harris M (1995) Third molar surgery: an audit of the indications for surgery, post-operative complaints and patient satisfaction. Br J Oral Maxillofac Surg 33:33–35

    Article  PubMed  Google Scholar 

  26. Huang GT, Sonoyama W, Chen J, Park SH (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324:225–236. https://doi.org/10.1007/s00441-005-0117-9

    Article  PubMed  Google Scholar 

  27. Murad AM, Rech EL (2012) NanoUPLC-MSE proteomic data assessment of soybean seeds using the Uniprot database. BMC Biotechnol 12:82. https://doi.org/10.1186/1472-6750-12-82

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  Google Scholar 

  29. Alfenas CF, Mendes TAO, Ramos HJO, Bruckner FP, Antunes HS, Rocas IN, Siqueira JF Jr, Provenzano JC (2017) Human exoproteome in acute apical abscesses. J Endod 43:1479–1485. https://doi.org/10.1016/j.joen.2017.04.019

    Article  PubMed  Google Scholar 

  30. Petriz BA, Almeida JA, Gomes CP, Pereira RW, Murad AM, Franco OL (2015) NanoUPLC/MS(E) proteomic analysis reveals modulation on left ventricle proteome from hypertensive rats after exercise training. J Proteomics 113:351–365. https://doi.org/10.1016/j.jprot.2014.10.010

    Article  PubMed  Google Scholar 

  31. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719. https://doi.org/10.1002/pmic.200800564

    Article  PubMed  Google Scholar 

  32. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200. https://doi.org/10.1021/ac048455k

    Article  PubMed  Google Scholar 

  33. Jagr M, Eckhardt A, Pataridis S, Foltan R, Mysak J, Miksik I (2016) Proteomic analysis of human tooth pulp proteomes-comparison of caries-resistant and caries-susceptible persons. J Proteomics 145:127–136. https://doi.org/10.1016/j.jprot.2016.04.022

    Article  PubMed  Google Scholar 

  34. Jagr M, Eckhardt A, Pataridis S, Miksik I (2012) Comprehensive proteomic analysis of human dentin. Eur J Oral Sci 120:259–268. https://doi.org/10.1111/j.1600-0722.2012.00977.x

    Article  PubMed  Google Scholar 

  35. Moule AJ, Li H, Bartold PM (1995) Donor variability in the proliferation of human dental pulp fibroblasts. Aust Dent J 40:110–114

    Article  PubMed  Google Scholar 

  36. Renard E, Gaudin A, Bienvenu G, Amiaud J, Farges JC, Cuturi MC, Moreau A, Alliot-Licht B (2016) Immune cells and molecular networks in experimentally induced pulpitis. J Dent Res 95:196–205. https://doi.org/10.1177/0022034515612086

    Article  PubMed  Google Scholar 

  37. Fristad I, Bletsa A, Byers M (2010) Inflammatory nerve responses in the dental pulp. Endodontic Topics 17:12–41

    Article  Google Scholar 

  38. Cooper PR, Holder MJ, Smith AJ (2014) Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 40:S46–S51. https://doi.org/10.1016/j.joen.2014.01.021

    Article  PubMed  Google Scholar 

  39. Zhang R, Cooper PR, Smith G, Nor JE, Smith AJ (2011) Angiogenic activity of dentin matrix components. J Endod 37:26–30. https://doi.org/10.1016/j.joen.2010.08.042

    Article  PubMed  Google Scholar 

  40. Loureiro C, Buzalaf MAR, Pessan JP, Moraes FRN, Pela VT, Ventura TMO, Jacinto RC (2020) Comparative analysis of the proteomic profile of the dental pulp in different conditions. A pilot study. Braz Dent J 31:319–336. https://doi.org/10.1590/0103-6440202003167

    Article  PubMed  Google Scholar 

  41. Deng R, Hao J, Han W, Ni Y, Huang X, Hu Q (2015) Gelsolin regulates proliferation, apoptosis, migration and invasion in human oral carcinoma cells. Oncol Lett 9:2129–2134. https://doi.org/10.3892/ol.2015.3002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J, Ishkitiev N (2018) Proteome response of dental pulp cells to exogenous FGF8. J Proteomics 183:14–24. https://doi.org/10.1016/j.jprot.2018.05.004

    Article  PubMed  Google Scholar 

  43. Li GH, Arora PD, Chen Y, McCulloch CA, Liu P (2012) Multifunctional roles of gelsolin in health and diseases. Med Res Rev 32:999–1025. https://doi.org/10.1002/med.20231

    Article  PubMed  Google Scholar 

  44. Hahn CL, Liewehr FR (2007) Update on the adaptive immune responses of the dental pulp. J Endod 33:773–781. https://doi.org/10.1016/j.joen.2007.01.002

    Article  PubMed  Google Scholar 

  45. McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L (2011) Molecular programming of B cell memory. Nat Rev Immunol 12:24–34. https://doi.org/10.1038/nri3128

    Article  PubMed  PubMed Central  Google Scholar 

  46. Deimling D, Hannig C, Hoth-Hannig W, Schmitz P, Schulte-Monting J, Hannig M (2007) Non-destructive visualisation of protective proteins in the in situ pellicle. Clin Oral Investig 11:211–216. https://doi.org/10.1007/s00784-007-0112-5

    Article  PubMed  Google Scholar 

  47. D'Acquisto F, Merghani A, Lecona E, Rosignoli G, Raza K, Buckley CD, Flower RJ, Perretti M (2007) Annexin-1 modulates T-cell activation and differentiation. Blood 109:1095–1102. https://doi.org/10.1182/blood-2006-05-022798

    Article  PubMed  Google Scholar 

  48. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647. https://doi.org/10.1146/annurev.pharmtox.40.1.617

    Article  PubMed  Google Scholar 

  49. Wang H, Ma D, Zhang X, Xu S, Ning T, Wu B (2018) Comparative proteomic profiling of human dental pulp stem cells and periodontal ligament stem cells under in vitro osteogenic induction. Arch Oral Biol 89:9–19. https://doi.org/10.1016/j.archoralbio.2018.01.015

    Article  PubMed  Google Scholar 

  50. Huynh AH, Veith PD, McGregor NR, Adams GG, Chen D, Reynolds EC, Ngo LH, Darby IB (2015) Gingival crevicular fluid proteomes in health, gingivitis and chronic periodontitis. J Periodontal Res 50:637–649. https://doi.org/10.1111/jre.12244

    Article  PubMed  Google Scholar 

  51. Nair PN (1997) Apical periodontitis: a dynamic encounter between root canal infection and host response. Periodontol 2000(13):121–148

  52. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370. https://doi.org/10.1038/cddis.2014.337

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062. https://doi.org/10.1016/j.yexcr.2007.03.040

    Article  PubMed  Google Scholar 

  55. D’Alessandro A, Nemkov T, Moore HB, Moore EE, Wither M, Nydam T, Slaughter A, Silliman CC, Banerjee A, Hansen KC (2016) Metabolomics of trauma-associated death: shared and fluid-specific features of human plasma vs lymph. Blood Transfus 14:185–194. https://doi.org/10.2450/2016.0208-15

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu JQ, Jiang JH, Xu L, Liang C, Wang XJ, Bai Y (2018) Magnetic bead-based salivary peptidome profiling for accelerated osteogenic orthodontic treatments. Chin J Dent Res 21:41–49. https://doi.org/10.3290/j.cjdr.a39917

    Article  PubMed  Google Scholar 

  57. Cooper PR, Chicca IJ, Holder MJ, Milward MR (2017) Inflammation and regeneration in the dentin-pulp complex: net gain or net loss? J Endod 43:S87–S94. https://doi.org/10.1016/j.joen.2017.06.011

    Article  PubMed  Google Scholar 

  58. Byers MR, Taylor PE, Khayat BG, Kimberly CL (1990) Effects of injury and inflammation on pulpal and periapical nerves. J Endod 16:78–84. https://doi.org/10.1016/S0099-2399(06)81568-2

    Article  PubMed  Google Scholar 

  59. Bowles WR, Withrow JC, Lepinski AM, Hargreaves KM (2003) Tissue levels of immunoreactive substance P are increased in patients with irreversible pulpitis. J Endod 29:265–267. https://doi.org/10.1097/00004770-200304000-00009

    Article  PubMed  Google Scholar 

  60. Jacobi-Gresser E, Schutt S, Huesker K, Von Baehr V (2015) Methyl mercaptan and hydrogen sulfide products stimulate proinflammatory cytokines in patients with necrotic pulp tissue and endodontically treated teeth. J Biol Regul Homeost Agents 29:73–84

    PubMed  Google Scholar 

  61. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N, Zamzami N, Jan G, Kroemer G, Brenner C (2007) GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26:2606–2620. https://doi.org/10.1038/sj.onc.1210074

    Article  PubMed  Google Scholar 

  62. Baik JE, Choe HI, Hong SW, Kang SS, Ahn KB, Cho K, Yun CH, Han SH (2016) Human salivary proteins with affinity to lipoteichoic acid of Enterococcus faecalis. Mol Immunol 77:52–59. https://doi.org/10.1016/j.molimm.2016.07.013

    Article  PubMed  Google Scholar 

  63. Stashenko P, Teles R, D'Souza R (1998) Periapical inflammatory responses and their modulation. Crit Rev Oral Biol Med 9:498–521

    Article  PubMed  Google Scholar 

  64. Cappello P, Principe M, Bulfamante S, Novelli F (2017) Alpha-enolase (ENO1), a potential target in novel immunotherapies. Front Biosci (Landmark Ed) 22:944–959

    Article  Google Scholar 

  65. Curciarello R, Steele A, Cooper D, MacDonald TT, Kruidenier L, Kudo T (2014) The role of galectin-1 and galectin-3 in the mucosal immune response to Citrobacter rodentium infection. PLoS One 9:e107933. https://doi.org/10.1371/journal.pone.0107933

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brito LNS, de Lemos Almeida MMR, de Souza LB, Alves PM, Nonaka CFW, Godoy GP (2018) Immunohistochemical analysis of galectins-1, -3, and -7 in periapical granulomas, radicular cysts, and residual radicular cysts. J Endod 44:728–733. https://doi.org/10.1016/j.joen.2018.01.008

    Article  PubMed  Google Scholar 

  67. Asea A (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11:34–45

    PubMed  PubMed Central  Google Scholar 

  68. Ricucci D, Siqueira JF Jr, Loghin S, Lin LM (2016) Pulp and apical tissue response to deep caries in immature teeth: a histologic and histobacteriologic study. J Dent. 56:19–32. https://doi.org/10.1016/j.jdent.2016.10.005

    Article  PubMed  Google Scholar 

  69. Siqueira JF Jr (2001) Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J 34:1–10

    Article  PubMed  Google Scholar 

  70. Ricucci D, Siqueira JF Jr (2010) Fate of the tissue in lateral canals and apical ramifications in response to pathologic conditions and treatment procedures. J Endod 36:1–15. https://doi.org/10.1016/j.joen.2009.09.038

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Universidade Católica de Brasília (UCB), Conselho Nacional de Desenvolvimento Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo do Distrito Federal (FAPDF) and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (Fundect).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taia Maria Berto Rezende.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research protocol was approved by the University of Brasília human ethics committee (CEP/FS-UnB n. 018137/2015).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 27 kb)

ESM 2

(DOCX 22 kb)

ESM 3

(DOCX 16 kb)

ESM 4

(DOCX 18 kb)

ESM 5

(DOCX 17.8 kb)

ESM 6

(DOCX 17.0 kb)

ESM 7

(DOCX 18.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P.A.O., Lima, S., Freire, M.d. et al. Proteomic analysis of human dental pulp in different clinical diagnosis. Clin Oral Invest 25, 3285–3295 (2021). https://doi.org/10.1007/s00784-020-03660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03660-3

Keywords

Navigation