Skip to main content

Advertisement

Log in

Antimicrobial properties, compressive strength and fluoride release capacity of essential oil-modified glass ionomer cements—an in vitro study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study was designed to investigate the antimicrobial properties, compressive strength and fluoride release capacities of high-viscous glass ionomer cements (GICs) after incorporation of cinnamon and thyme essential oils.

Materials and methods

Experimental-modified GICs were prepared by incorporation of thyme and cinnamon essential oils into the liquid phase of the cement at 5 and 10% v/v. Antimicrobial activity against selected microorganisms (Streptococcus mutans and Candida albicans) was done using direct contact test. Compressive strength of the four new formulations and control group was tested using a universal testing machine while fluoride ion release was measured by ion-selective electrode at 1, 7, 14 and 28 days. Data analysis and comparisons between groups were performed using factorial and one-way ANOVA and Tukey’s tests.

Results

All newly formulated GICs exhibited significantly higher inhibitory effects against both Streptococcus mutans and Candida albicans growth when compared to conventional GIC (p < 0.05). Compressive strength of 5% cinnamon-modified GIC (MPa = 160.32 ± 6.66) showed no significant difference when compared with conventional GIC (MPa = 165.7 ± 5.769) (p value > 0.05). Cumulative fluoride-releasing pattern at days 7, 14, and 28 were 10% cinnamon-GIC > 5% thyme-GIC > 5% cinnamon-GIC > 10% thyme GIC > conventional GIC.

Conclusions

Incorporation of 5% cinnamon oil into glass ionomer resulted in better antimicrobial effects against S. mutans and C. albicans and increased fluoride-release capacity without jeopardizing its compressive strength.

Clinical relevance

The 5% cinnamon-modified GIC appears to be a promising alternative restorative material in ART technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602

    Google Scholar 

  2. Frencken JE, Pilot T, Songpaisan Y, Phantumvanit P (1996) Atraumatic restorative treatment (ART): rationale, technique, and development. J Public Health Dent 56:135–140 discussion 161–3

    PubMed  Google Scholar 

  3. Frencken JE, Van’t Hof MA, Van Amerongen WE, Holmgren CJ (2004) Effectiveness of single-surface ART restorations in the permanent dentition: a meta-analysis. J Dent Res 83:120–123

    PubMed  Google Scholar 

  4. Mjör IA, Gordan VV (1999) A review of Atraumatic restorative treatment (ART). Int Dent J 49(3):127–131

    PubMed  Google Scholar 

  5. Mickenautsch S, Frencken JE, van't HM (2007) Atraumatic restorative treatment and dental anxiety in outpatients attending public oral health clinics in South Africa. J Public Health Dent 67(3):179–184

    PubMed  Google Scholar 

  6. Pilot T (1999) Introduction—ART from a global perspective. Community Dent Oral Epidemiol 27:421–422

    PubMed  Google Scholar 

  7. Lo EC, Luo Y, Tan HP, Dyson JE, Corbet EF (2006) ART and conventional root restorations in elders after 12 months. J Dent Res 85:929–932

    PubMed  Google Scholar 

  8. Gonçalves CF, E Silva MV, Costa LR, Ayrton de Toledo O (2015) One-year follow-up of atraumatic restorative treatment (ART) for dental caries in children undergoing oncohematological treatment: a pragmatic trial. BMC Oral Health 15(1):127

    PubMed  PubMed Central  Google Scholar 

  9. Yip HK, Smales RJ, Ngo HC, Tay FR, Chu FC (2001) Selection of restorative materials for the atraumatic restorative treatment (ART) approach: a review. Spec Care Dentist 21(6):216–221

    PubMed  Google Scholar 

  10. Wilson AD, Mclean JW (1988) Glass-ionomer cement. Quintessence Publishing Co., Inc., Chicago

    Google Scholar 

  11. Frencken JE (2017) Atraumatic restorative treatment and minimal intervention dentistry. Br Dent J 223(3):183–189

    PubMed  Google Scholar 

  12. Nigam AG, Jaiswal JN, Murthy RC, Pandey RK (2009) Estimation of fluoride release from various dental materials in different media—an in vitro study. Int J Clin Pediatr Dent 2(1):1–8

    PubMed  PubMed Central  Google Scholar 

  13. Weerheijm KL, Kreulen CM, de Soet JJ, Groen HJ, van Amerongen WE (1999) Bacterial counts in carious dentine under restorations: 2-year in vivo effects. Caries Res 33:130–134

    PubMed  Google Scholar 

  14. Bjørndal L, Larsen T, Thylstrup A (1997) A clinical and microbiological study of deep carious lesion during stepwise excavation using long treatment intervals. Caries Res 31:411–417

    PubMed  Google Scholar 

  15. Weerheijm KL, de Soet JJ, van Amerongen WE, de Graaff J (1993) The effect of glass-ionomer cement on carious dentine: an in vivo study. Caries Res 27(5):417–423

    PubMed  Google Scholar 

  16. Vermeersch G, Leloup G, Delmee M, Vreven J (2005) Antibacterial activity of glass-ionomer cements, compomers and resin composites: relationship between acidity and material setting phase. J Oral Rehabil 32:368–374

    PubMed  Google Scholar 

  17. De Schepper EJ, White RR, von der Lehr W (1989) Antimicrobial effects of glass ionomers. Am J Dent 2:51–56

    Google Scholar 

  18. Czarnecka B, Limanowska-Shaw H, Nicholson JW (2002) Buffering and ion release by a glass-ionomer cement under near-neutral and acidic conditions. Biomaterials 23:2783–2788

    PubMed  Google Scholar 

  19. Eick S, Glockmann E, Brandl B, Pfister W (2004) Adherence of Streptococcus mutans to various restorative materials in a continuous flow system. J Oral Rehabil 31(3):278–285

    PubMed  Google Scholar 

  20. Wiegand A, Buchalla W, Attin T (2007) Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23(3):343–362. https://doi.org/10.1016/j.dental.2006.01.022

    Article  PubMed  Google Scholar 

  21. Fúcio SB, Paula AB, Sardi JC, Duque C, Correr-Sobrinho L, Puppin-Rontani RM (2016) Streptococcus mutans biofilm influences on the antimicrobial properties of glass ionomer cements. Braz Dent J 27(6):681–687

    PubMed  Google Scholar 

  22. Duque C, Aida KL, Pereira JA, Teixeira GS, Caldo-Teixeira AS, Perrone LR, Caiaffa KS, Negrini TC, Castilho ARF, Costa CAS (2017) In vitro and in vivo evaluations of glass-ionomer cement containing chlorhexidine for atraumatic restorative treatment. J Appl Oral Sci 25(5):541–550

    PubMed  PubMed Central  Google Scholar 

  23. Prabhakar AR, Prahlad D, Kumar SR (2013) Antibacterial activity, fluoride release, and physical properties of an antibiotic-modified glass ionomer cement. Pediatr Dent 35:411–415

    PubMed  Google Scholar 

  24. Hatunoglu E, Ozturk F, Bilenlerc T, Aksakalli S, Simseke N (2014) Antibacterial and mechanical properties of propolis added to glass ionomer cement. Angle Orthod 84(2):368–373

    PubMed  Google Scholar 

  25. Palmer G, Jones FH, Billington RW, Pearson GJ (2004) Chlorhexidine release from experimental glass ionomer cement. Biomaterials 25:5423–5431

    PubMed  Google Scholar 

  26. Botelho MG (2004) Compressive strength of glass ionomer cements with dental antibacterial agents. SADJ 59:51–53

    PubMed  Google Scholar 

  27. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    PubMed  PubMed Central  Google Scholar 

  28. Thosar N, Basak S, Bahadure RN, Rajurkar M (2013) Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study. Eur J Dent 7(Suppl 1):S71–S77

    PubMed Central  Google Scholar 

  29. Gupta C, Kumari A, Garg AP, Catanzaro R, Marotta F (2011) Comparative study of cinnamon oil and clove oil on some oral microbiota. Acta Biomed 82(3):197–199

    PubMed  Google Scholar 

  30. Tardugno R, Pellati F, Iseppi R, Bondi M, Bruzzesi G, Benvenuti S (2018) Phytochemical composition and in vitro screening of the antimicrobial activity of essential oils on oral pathogenic bacteria. Nat Prod Res 32(5):544–551

    PubMed  Google Scholar 

  31. Fani M, Kohanteb J (2017) In vitro antimicrobial activity of thymus vulgaris essential oil against major oral pathogens. J Evid Based Complement Alternat Med 22(4):660–666

    Google Scholar 

  32. Ahmad A, Vuuren SV, Viljoen A (2014) Unravelling the complex antimicrobial interactions of essential oils—the case of Thymus vulgaris (thyme). Molecules 19:2896–2910

    PubMed  PubMed Central  Google Scholar 

  33. Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi SM (2015) Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients. 7(9):7729–7748

    PubMed  PubMed Central  Google Scholar 

  34. He Z, Huang Z, Jiang W, Zhou W (2019) Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front Microbiol 25(10):2241

    Google Scholar 

  35. Wiley Registry 11th Edition/NIST 2017 Mass Spectral Library

  36. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  PubMed  Google Scholar 

  37. Slutzkey S, Moses O, Tal H, Meirowitz A, Matalon S (2017) Direct contact test for evaluating bacterial growth on machined and rough surface implants: an in vitro study. Implant Dent 26(6):899–903. https://doi.org/10.1097/ID.0000000000000697

    Article  PubMed  Google Scholar 

  38. International Organization for Standardization. ISO 9917-1 (2007) Dentistry—water-based cements—part 1: powder/liquid acid-base cements. Geneva

  39. Lewinstein I, Block J, Melamed G, Dolev E, Matalon S, Ormianer Z (2014) Fluoride ion release and solubility of fluoride enriched interim cements. J Prosthet Dent 112(2):188–193

    PubMed  Google Scholar 

  40. May E, Donly KJ (2017) Fluoride release and re-release from a bioactive restorative material. Am J Dent 30(6):305–308

    PubMed  Google Scholar 

  41. Santos RL, Pithon MM, Fernandes AB, Carvalho FG, Cavalcanti AL, Vaitsman DS (2013) Fluoride release/uptake from different orthodontic adhesives: a 30-month longitudinal study. Braz Dent J 24(4):410–414

    PubMed  Google Scholar 

  42. Frencken JE, Leal SC, Navarro MF (2012) Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview. Clin Oral Investig 16:1337–1346. https://doi.org/10.1007/s00784-012-0783-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Faccin ES, Ferreira SH, Kramer PF, Ardenghi TM, Feldens CA (2009) Clinical performance of ART restorations in primary teeth: a survival analysis. J Clin Pediatr Dent 33:295–298

    PubMed  Google Scholar 

  44. Lo ECM, Holmgren CJ (2001) Provision of atraumatic restorative treatment (ART) restoration to Chinese pre-school children: a 30-month evaluation. Int J Paediatr Dent 11:3–10

    PubMed  Google Scholar 

  45. Tantbirojn D, Feigal RJ, Ko CC, Versluis A (2006) Remineralized dentin lesions induced by glass ionomer demonstrate increased resistance to subsequent acid challenge. Quintessence Int 37(4):273–281

    PubMed  Google Scholar 

  46. Nicholson JW (1998) Chemistry of glass-ionomer cements: a review. Biomaterials 19:485–494

    PubMed  Google Scholar 

  47. Munhoz T, Karpukhina N, Hill RG, Law RV, De Almeida LH (2010) Setting of commercial glass ionomer cement Fuji IX by (27) Al and (19) F MAS-NMR. J Dent 38(4):325–330

    PubMed  Google Scholar 

  48. Yesilyurt C, Er K, Tasdemir T, Buruk K, Celik D (2009) Antibacterial activity and physical properties of glass-ionomer containing antibiotics. Oper Dent 34:18–23

    PubMed  Google Scholar 

  49. Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D (2013) Dental caries from a molecular microbiological perspective. Caries Res 47:89–102

    PubMed  Google Scholar 

  50. Lemos JA, Quivey RG, Koo H, Abranches J (2013) Streptococcus mutans: a new Gram-positive paradigm? Microbiology 159:436–445

    PubMed  PubMed Central  Google Scholar 

  51. Raja M, Hannan A, Ali K (2010) Association of oral candidal carriage with dental caries in children. Caries Res 44:272–276

    PubMed  Google Scholar 

  52. Fechney JM, Browne GV, Prabhu N et al (2018) Preliminary study of the oral mycobiome of children with and without dental caries. J Oral Microbial 11(1):1536182

    Google Scholar 

  53. Pereira D, Seneviratne CJ, Koga-Ito CY, Samaranayake LP (2018) Is the oral fungal pathogen Candida albicans a cariogen? Oral Dis 24(4):518–526

    PubMed  Google Scholar 

  54. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82(5):1968–1981

    PubMed  PubMed Central  Google Scholar 

  55. Fakhruddin KS, Perera Samaranayake L, Egusa H, Chi Ngo H, Panduwawala C, Venkatachalam T, Kumarappan A, Pesee S (2020) Candida biome of severe early childhood caries (S-ECC) and its cariogenic virulence traits. J Oral Microbiol 12(1):1724484

    PubMed  PubMed Central  Google Scholar 

  56. Pizzo G, Giammanco GM, Cumbo E, Nicolosi G, Gallina G (2006) In vitro antibacterial activity of endodontic sealers. J Dent 34:35–40

    PubMed  Google Scholar 

  57. Nawal RR, Parande M, Sehgal R, Naik A, Rao NR (2011) A comparative evaluation of antimicrobial efficacy and flow properties for Epiphany, Guttaflow and AH-Plus sealer. Int Endod J 44:307–313

    PubMed  Google Scholar 

  58. Weiss EI, Shalhav M, Fuss Z (1996) Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol 12:179–184

    PubMed  Google Scholar 

  59. Szermer-Olearnik B, Sochocka M, Zwolińska K, Ciekot J, Czarny A, Szydzik J, Kowalski K, Boratyński J (2014) Comparison of microbiological and physicochemical methods for enumeration of microorganisms. Postepy Hig Med Dosw (Online) 68:1392–1396

    Google Scholar 

  60. Biesta-Peters EG, Reij MW, Joosten H, Gorris LG, Zwietering MH (2010) Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus. Appl Environ Microbiol 76(5):1399–1405

    PubMed  PubMed Central  Google Scholar 

  61. Baty F, Flandrois JP, Delignette-Muller ML (2002) Modelling the lag time of Listeria monocytogenes from viable count enumeration and optical density data. Appl Environ Microbiol 68(12):5816–5825

    PubMed  PubMed Central  Google Scholar 

  62. Jha SN (2016) Rapid detection of food adulterants and contaminants: theory and practice, 1st edn. Elsevier, London, p 109

    Google Scholar 

  63. Mortier E, Gerdolle DA, Jacquot B, Panighi MM (2004) Importance of water sorption and solubility studies for couple bonding agent. Oper Dent 29(6):669–676

    PubMed  Google Scholar 

  64. Pina-Vaz C, Goncalves Rodrigues A, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro L, Cavaleiro C, Goncalves MJ, Martinez-de-Oliveira J (2004) Antifungal activity of thymus oil and their major compounds. J Eur Acad Dermatol Venereol 18:73–78

    PubMed  Google Scholar 

  65. de Castro RD, de Souza TM, Bezerra LM, Ferreira GL, Costa EM, Cavalcanti AL (2015) Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study. BMC Complement Altern Med 15:417

    PubMed  PubMed Central  Google Scholar 

  66. Vasconcelos NG, Croda J, Simionatto S (2018) Antibacterial mechanisms of cinnamon and its constituents: a review. Microb Pathog 120:198–203

    PubMed  Google Scholar 

  67. Choi O, Cho SK, Kim J, Park CG, Kim J (2016) In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac J Trop Biomed 6(4):308–314

    Google Scholar 

  68. Veilleux M-P, Grenier D (2019) Determination of the effects of cinnamon barks fractions on Candida albicans and oral epithelial cells. BMC Complement Altern Med 19:303

    PubMed  PubMed Central  Google Scholar 

  69. Craig RG (1997) Mechanical properties. In: Restorative dental materials, 10th edn. Mosby, St. Louis, pp 56–103

    Google Scholar 

  70. Helvatjoglu-Antoniades M, Karantakis P, Papadogiannis Y, Kapetanios H (2001) Fluoride release from restorative materials and a luting cement. J Prosthet Dent 86(2):156–164

    PubMed  Google Scholar 

  71. Ansari S, Moshaverinia M, Roohpour N, Chee WW, Schricker SR, Moshaverinia A (2013) Properties of a proline-containing glass ionomer dental cement. J Prosthet Dent 110(5):408–413

    PubMed  Google Scholar 

  72. Billington RW, Williams JA, Pearson GJ (1990) Variation in powder/liquid ratio of restorative glass-ionomer cement used in dental practice. Br Dent J 169:164–167

    PubMed  Google Scholar 

  73. Francci C, Deaton TG, Arnold RR, Swift EJ Jr (1999) Fluoride release from restorative materials and its effects on dentin demineralization. J Dent Res 78(10):1647–1654

    PubMed  Google Scholar 

  74. De Moor RJ, Verbeeck RM, De Maeyer EA (1996) Fluoride release profiles of restorative glass ionomer formulations. Dent Mater 12:88–95

    PubMed  Google Scholar 

  75. Silva KG, Pedrini D, Delbem AC, Cannon M (2007) Micro-hardness and fluoride release of restorative materials in different storage media. Braz Dent J 18:309–313

    PubMed  Google Scholar 

  76. Koch G, Hatibovic-Kofeman S (1990) Glass ionomer cements as a fluoride release system in vivo. Swed Dent J 14:267–273

    PubMed  Google Scholar 

  77. Kuhn AT, Wilson AD (1985) The dissolution mechanisms of silicate and glass-ionomer dental cements. Biomaterials 6:378–382

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia I. Sherief.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherief, D.I., Fathi, M.S. & Abou El Fadl, R.K. Antimicrobial properties, compressive strength and fluoride release capacity of essential oil-modified glass ionomer cements—an in vitro study. Clin Oral Invest 25, 1879–1888 (2021). https://doi.org/10.1007/s00784-020-03493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03493-0

Keywords

Navigation