Skip to main content

Advertisement

Log in

Immediate implant placement following 1-year treatment with oral versus intravenous bisphosphonates: a histomorphometric canine study on peri-implant bone

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Bisphosphonates (BPs) are anti-resorptive medications with inhibitory effects on osteoclasts which decrease bone turnover. The present study aimed to assess the early effects of BPs on peri-implant bone.

Materials and methods

Twelve female mongrel dogs were assigned to one control and two experimental groups as follows: 12 months of oral alendronate (ALN, 3.5 mg/kg/week) or intravenous (IV) pamidronate (PAM, 1 mg/kg/week) for experimental groups. Following 8 weeks after implant insertion, the specimens were sacrificed, histological evaluation was performed, and C-terminal telopeptide of collagen I (CTx) analysis was performed on serums.

Results

PAM demonstrated the greatest marginal bone level (MBL), 2.64 ± 0.48, followed by ALN and control, 2.5 ± 0.4 and 0.66 ± 0.5 respectively. The least bone-implant contact was observed in PAM group (%39 ± 0.03) while it was significantly greater in the control group (p < 0.05). PAM and ALN demonstrated < 10 CTx levels versus > 300 in controls.

Conclusion

It is assumed that long-term oral or IV BP therapy decreases marginal bone resorption and osseointegration. These changes were more accentuated in IV BP administration. CTx does not seem to be a precise predictor for bisphosphonate-related osteonecrosis of the jaw.

Clinical relevance

BPs impair peri-implant bone remodeling and this phenomena may be effective for reducing resorption at esthetic zone implants; however, decrease in osseointegration may be a concern for implant treatment in patients receiving BPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khojasteh A, Behnia H, Morad G, Dashti SG, Dehghan MM, Shahab S, Abbas FM (2013) Healing of extraction sockets and augmented alveolar defects following 1-year treatment with bisphosphonate. J Craniofac Surg 24:e68–e73

    Article  PubMed  Google Scholar 

  2. Nazeman P, Rad MR, Khojasteh A (2016) Topical erythropoietin as a novel preventive and therapeutic agent in bisphosphonate-related osteonecrosis of the jaw. Dental Hypotheses 7:56

    Article  Google Scholar 

  3. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83:1032–1045

    Article  PubMed  Google Scholar 

  4. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, O'Ryan F (2014) American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 72:1938–1956

    Article  PubMed  Google Scholar 

  5. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B (2009) American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaw - 2009 update. Aust Endod J 35:119–130

    Article  PubMed  Google Scholar 

  6. Wilkinson GS, Kuo Y-F, Freeman JL, Goodwin JS (2007) Intravenous bisphosphonate therapy and inflammatory conditions or surgery of the jaw: a population-based analysis. J Natl Cancer Inst 99:1016–1024

    Article  PubMed  Google Scholar 

  7. Vahtsevanos K, Kyrgidis A, Verrou E, Katodritou E, Triaridis S, Andreadis CG, Boukovinas I, Koloutsos GE, Teleioudis Z, Kitikidou K (2009) Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol 27:5356–5362

    Article  PubMed  Google Scholar 

  8. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491

    Article  PubMed  Google Scholar 

  9. Mavrokokki T, Cheng A, Stein B, Goss A (2007) Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg 65:415–423

    Article  PubMed  Google Scholar 

  10. Saad F, Brown J, Van Poznak C, Ibrahim T, Stemmer S, Stopeck AT, Diel I, Takahashi S, Shore N, Henry D (2011) Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol:mdr435

  11. Fehm T, Beck V, Banys M, Lipp HP, Hairass M, Reinert S, Solomayer EF, Wallwiener D, Krimmel M (2009) Bisphosphonate-induced osteonecrosis of the jaw (ONJ): incidence and risk factors in patients with breast cancer and gynecological malignancies. Gynecol Oncol 112:605–609

    Article  PubMed  Google Scholar 

  12. Scoletta M, Arduino PG, Pol R, Arata V, Silvestri S, Chiecchio A, Mozzati M (2011) Initial experience on the outcome of teeth extractions in intravenous bisphosphonate-treated patients: a cautionary report. J Oral Maxillofac Surg 69:456–462

    Article  PubMed  Google Scholar 

  13. Shabestari GO, Shayesteh YS, Khojasteh A, Alikhasi M, Moslemi N, Aminian A, Masaeli R, Eslami B, Treister NS (2010) Implant placement in patients with oral bisphosphonate therapy: a case series. Clin Implant Dent Relat Res 12:175–180

    PubMed  Google Scholar 

  14. Jakobsen T, Baas J, Bechtold JE, Elmengaard B, Soballe K (2007) Soaking morselized allograft in bisphosphonate can impair implant fixation. Clin Orthop Relat Res 463:195–201

    PubMed  Google Scholar 

  15. Zahid TM, Wang BY, Cohen RE (2011) Influence of bisphosphonates on alveolar bone loss around osseointegrated implants. J Oral Implantol 37:335–346

    Article  PubMed  Google Scholar 

  16. Kasai T, Pogrel MA, Hossaini M (2009) The prognosis for dental implants placed in patients taking oral bisphosphonates. J Calif Dent Assoc 37:39–42

    PubMed  Google Scholar 

  17. Duarte PM, de Vasconcelos Gurgel BC, Sallum AW, Filho GR, Sallum EA, Nociti FH Jr (2005) Alendronate therapy may be effective in the prevention of bone loss around titanium implants inserted in estrogen-deficient rats. J Periodontol 76:107–114

    Article  PubMed  Google Scholar 

  18. Giro G, Goncalves D, Sakakura CE, Pereira RM, Marcantonio Junior E, Orrico SR (2008) Influence of estrogen deficiency and its treatment with alendronate and estrogen on bone density around osseointegrated implants: radiographic study in female rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:162–167

    Article  PubMed  Google Scholar 

  19. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G (1998) Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone 22:455–461

    Article  PubMed  Google Scholar 

  20. Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, Supronik J, Lewiecki EM, Ochoa L, Miller P, Hu H, Mesenbrink P, Hartl F, Gasser J, Eriksen EF (2008) Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 23:6–16

    Article  PubMed  Google Scholar 

  21. Jakobsen T, Bechtold JE, Soballe K, Jensen T, Vestermark MT, Baas J (2016) Local delivery of zoledronate from a poly (D,L-lactide)-coating increases fixation of hydroxy-coated implants. In: J Orthop Res

    Google Scholar 

  22. Kettenberger U, Luginbuehl V, Procter P, Pioletti DP (2015) In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation. J Tissue Eng Regen Med

  23. National Osteoporosis Foundation (2002) America’s bone health: the state of osteoporosis and low bone mass. National Osteoporosis Foundation, Washington DC

    Google Scholar 

  24. Affairs ADACS (2006) Dental management of patients receiving oral bisphosphonate therapy: expert panel recommendations. J Am Dent Assoc 137:1144–1150

    Article  Google Scholar 

  25. Allen MR (2011) The effects of bisphosphonates on jaw bone remodeling, tissue properties, and extraction healing. Odontology 99:8–17

    Article  PubMed  Google Scholar 

  26. Marx R (2007) Oral and intravenous bisphosphonate induced osteonecrosis of the jaws: history, etiology, prevention, and treatment. Chicago

  27. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62:527–534

    Article  PubMed  Google Scholar 

  28. Allen MR (2009) Bisphosphonates and osteonecrosis of the jaw: moving from the bedside to the bench. Cells Tissues Organs 189:289–294

    Article  PubMed  Google Scholar 

  29. Diab T, Allen MR, Burr DB (2009) Alendronate treatment results in similar levels of trabecular bone remodeling in the femoral neck and vertebra. Osteoporos Int 20:647–652

    Article  PubMed  Google Scholar 

  30. Allen MR, Kubek DJ, Burr DB (2010) Cancer treatment dosing regimens of zoledronic acid result in near-complete suppression of mandible intracortical bone remodeling in beagle dogs. J Bone Miner Res 25:98–105

    Article  PubMed  Google Scholar 

  31. Allen MR, Burr DB (2008) Mandible matrix necrosis in beagle dogs after 3 years of daily oral bisphosphonate treatment. J Oral Maxillofac Surg 66:987–994

    Article  PubMed  PubMed Central  Google Scholar 

  32. Srisubut S, Teerakapong A, Vattraphodes T, Taweechaisupapong S (2007) Effect of local delivery of alendronate on bone formation in bioactive glass grafting in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:e11–e16

    Article  PubMed  Google Scholar 

  33. Fischer KR, Stavropoulos A, Calvo-Guirado JL, Schneider D, Fickl S (2015) Influence of local administration of pamidronate on extraction socket healing--a histomorphometric proof-of-principle pre-clinical in vivo evaluation. Clin Oral Implants Res 26:1135–1142

    Article  PubMed  Google Scholar 

  34. Jensen TB, Bechtold JE, Chen X, Soballe K (2007) Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants. J Orthop Res 25:772–778

    Article  PubMed  Google Scholar 

  35. Taxel P, Ortiz D, Shafer D, Pendrys D, Reisine S, Rengasamy K, Freilich M (2014) The relationship between implant stability and bone health markers in post-menopausal women with bisphosphonate exposure. Clin Oral Investig 18:49–57

    Article  PubMed  Google Scholar 

  36. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  Google Scholar 

  37. Leu CT, Luegmayr E, Freedman LP, Rodan GA, Reszka AA (2006) Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy. Bone 38:628–636

    Article  PubMed  Google Scholar 

  38. Mathijssen N, Buma P, Hannink G (2014) Combining bisphosphonates with allograft bone for implant fixation. Cell Tissue Bank 15:329–336

    Article  PubMed  Google Scholar 

  39. Bobyn JD, Thompson R, Lim L, Pura JA, Bobyn K, Tanzer M (2014) Local alendronic acid elution increases net periimplant bone formation: a micro-CT analysis. Clin Orthop Relat Res 472:687–694

    Article  PubMed  Google Scholar 

  40. Pura JA, Bobyn JD, Tanzer M (2016) Implant-delivered alendronate causes a dose-dependent response on net bone formation around porous titanium implants in canines. Clin Orthop Relat Res 474:1224–1233

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jakobsen T, Baas J, Bechtold JE, Elmengaard B, Soballe K (2010) The effect of soaking allograft in bisphosphonate: a pilot dose-response study. Clin Orthop Relat Res 468:867–874

    Article  PubMed  Google Scholar 

  42. Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49:50–55

    Article  PubMed  Google Scholar 

  43. Marx RE, Cillo JE, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65:2397–2410

    Article  PubMed  Google Scholar 

  44. Cremers S, Farooki A (2011) Biochemical markers of bone turnover in osteonecrosis of the jaw in patients with osteoporosis and advanced cancer involving the bone. Ann N Y Acad Sci 1218:80–87

    Article  PubMed  Google Scholar 

  45. Lee CY, Suzuki JB (2010) CTX biochemical marker of bone metabolism. Is it a reliable predictor of bisphosphonate-associated osteonecrosis of the jaws after surgery? Part II: a prospective clinical study. Implant Dent 19:29–38

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by grants awarded by Research Institute of Dental Sciences at Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Khojasteh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khojasteh, A., Dehghan, M.M. & Nazeman, P. Immediate implant placement following 1-year treatment with oral versus intravenous bisphosphonates: a histomorphometric canine study on peri-implant bone. Clin Oral Invest 23, 1803–1809 (2019). https://doi.org/10.1007/s00784-018-2579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2579-7

Keywords

Navigation