Skip to main content
Log in

Long-term factorization in Heath–Jarrow–Morton models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

The long-term factorization decomposes the stochastic discount factor (SDF) into discounting at the rate of return on the long bond and a martingale that defines a long-term forward measure. We establish sufficient conditions for existence of the long-term factorization in HJM models. A condition on the forward rate volatility ensures existence of the long bond volatility. This yields existence of the long bond and convergence of \(T\)-forward measures to the long forward measure. It contrasts with the familiar risk-neutral factorization that decomposes the SDF into discounting at the short rate and a martingale defining the risk-neutral measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Jermann, U.J.: Using asset prices to measure the persistence of the marginal utility of wealth. Econometrica 73, 1977–2016 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Backus, D., Boyarchenko, N., Chernov, M.: Term structures of asset prices and returns. J. Financ. Econ. (2018). Forthcoming, available online at https://doi.org/10.1016/j.jfineco.2018.04.005

    Google Scholar 

  3. Bakshi, G., Chabi-Yo, F.: Variance bounds on the permanent and transitory components of stochastic discount factors. J. Financ. Econ. 105, 191–208 (2012)

    Article  Google Scholar 

  4. Bakshi, G., Chabi-Yo, F., Gao, X.: A recovery that we can trust? Deducing and testing the restrictions of the recovery theorem. Rev. Financ. Stud. 31, 532–555 (2018)

    Article  Google Scholar 

  5. Björk, T., Christensen, B.J.: Interest rate dynamics and consistent forward rate curves. Math. Finance 9, 323–348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björk, T., Gombani, A.: Minimal realizations of interest rate models. Finance Stoch. 3, 413–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Björk, T., Svensson, L.: On the existence of finite-dimensional realizations for nonlinear forward rate models. Math. Finance 11, 205–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borovička, J., Hansen, L.P.: Term structure of uncertainty in the macroeconomy. In: Taylor, J.B., Uhlig, H. (eds.) Handbook of Macroeconomics: Volume 2B, pp. 1641–1696. Elsevier B.V., Amsterdam (2016). Chapter 21

    Google Scholar 

  9. Borovička, J., Hansen, L.P., Hendricks, M., Scheinkman, J.A.: Risk-price dynamics. J. Financ. Econom. 9, 3–65 (2011)

    Article  Google Scholar 

  10. Borovička, J., Hansen, L.P., Scheinkman, J.A.: Misspecified recovery. J. Finance 71, 2493–2544 (2016)

    Article  Google Scholar 

  11. Carmona, R., Tehranchi, M.R.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Media (2007)

    MATH  Google Scholar 

  12. Christensen, T.M.: Nonparametric identification of positive eigenfunctions. Econom. Theory 31, 1310–1330 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christensen, T.M.: Nonparametric stochastic discount factor decomposition. Econometrica 85, 1501–1536 (2017)

    Article  MathSciNet  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  15. Dybvig, P.H., Ingersoll, J.E., Ross, S.A.: Long forward and zero-coupon rates can never fall. J. Bus. 69, 1–25 (1996)

    Article  Google Scholar 

  16. Émery, M.: Une topologie sur l’espace des semimartingales. In: Dellacherie, C., et al. (eds.) Séminaire de Probabilités XIII. Lecture Notes in Mathematics, vol. 721, pp. 260–280. Springer, Berlin (1979)

    Chapter  Google Scholar 

  17. Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  18. Filipović, D., Larsson, M., Trolle, A.B.: On the relation between linearity-generating processes and linear-rational models. Working paper (2016). Available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2753484

  19. Filipović, D., Larsson, M., Trolle, A.B.: Linear-rational term structure models. J. Finance 72, 655–704 (2017)

    Article  Google Scholar 

  20. Gaspar, R.M., Pimentel, R.: On swap rate dynamics: to freeze or not to freeze? Int. J. Comput. Math. 94, 2208–2222 (2017)

    Article  MathSciNet  Google Scholar 

  21. Geman, H.: The importance of the forward neutral probability in a stochastic approach of interest rates. Working paper, ESSEC (1989). Unpublished

  22. Geman, H., El Karoui, N., Rochet, J.: Changes of numeraire, changes of probability measure and option pricing. J. Appl. Probab. 32, 443–458 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, L.P.: Dynamic valuation decomposition within stochastic economies. Econometrica 80, 911–967 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansen, L.P., Heaton, J.C., Li, N.: Consumption strikes back? Measuring long-run risk. J. Polit. Econ. 116, 260–302 (2008)

    Article  Google Scholar 

  25. Hansen, L.P., Scheinkman, J.A.: Long-term risk: an operator approach. Econometrica 77, 177–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hansen, L.P., Scheinkman, J.A.: Pricing growth-rate risk. Finance Stoch. 16, 1–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hansen, L.P., Scheinkman, J.A.: Stochastic compounding and uncertain valuation. In: Glaeser, E.D., et al. (eds.) After the Flood. How the Great Recession Changed Economic Thought, pp. 21–50. The University of Chicago Press, Chicago (2017)

    Google Scholar 

  28. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  29. Jamshidian, F.: An exact bond option formula. J. Finance 44, 205–209 (1989)

    Article  Google Scholar 

  30. Jarrow, R.A.: The pricing of commodity options with stochastic interest rates. Adv. Futures Options Res. 2, 19–45 (1987)

    Google Scholar 

  31. Lustig, H.N., Stathopoulos, A., Verdelhan, A.: The term structure of currency carry trade risk premia. Working paper (2016). Available online at http://ssrn.com/abstract=2340547

  32. Musiela, M.: Stochastic PDEs and term structure models. Journées Internationales de Finance, IGR-AFFI, La Baule (1993). Unpublished

  33. Qin, L., Linetsky, V.: Positive eigenfunctions of Markovian pricing operators: Hansen–Scheinkman factorization, Ross recovery and long-term pricing. Oper. Res. 64, 99–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qin, L., Linetsky, V.: Long term risk: a martingale approach. Econometrica 85, 299–312 (2017)

    Article  MathSciNet  Google Scholar 

  35. Qin, L., Linetsky, V., Nie, Y.: Long forward probabilities, recovery and the term structure of bond risk premiums. Rev. Financ. Stud. (2018). Forthcoming, available online at https://doi.org/10.1093/rfs/hhy042

    Google Scholar 

  36. Ross, S.A.: The recovery theorem. J. Finance 70, 615–648 (2015)

    Article  Google Scholar 

  37. Vasiček, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5, 177–188 (1977)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This paper is based on research supported by the grant from the National Science Foundation CMMI-1536503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Linetsky.

Appendix: Proof of Theorem 2.4

Appendix: Proof of Theorem 2.4

The proof consists of two parts. We first prove that the processes on the right-hand side of (2.8) and (2.9) are well defined (the integrals in the exponential are well defined). Next we prove that

$$ \frac{{\mathbb {E}}^{\mathbb {P}}_{t}[S_{T}]}{{\mathbb {E}}^{\mathbb {P}}[S_{T}]} \stackrel{L^{1}}{\longrightarrow} M_{t}^{\infty} \qquad \text{as } T\rightarrow\infty $$
(A.1)

with \(M_{t}^{\infty}\) defined by the right-hand side of (2.9). By Theorems 3.1 and 3.2 of Qin and Linetsky [34] and Proposition 2.1, the results in parts (i)–(iv) follow. The expression for \(W^{\mathbb{Q}^{\infty}}\) then follows from Girsanov’s theorem (cf. Filipović [17, Theorem 2.3.3]), and the SDE for \((f_{t})\) under \(\mathbb{Q}^{\infty}\) then follows immediately.

Since \(M_{t}^{\infty}=S_{t}B_{t}^{\infty}\), we need to prove that the right-hand side of (2.8) is well defined. We first prove the following lemma which is central to all subsequent estimates.

Lemma A.1

For any function \(h\in H_{\bar{w}}^{0}\), we have the estimate

$$\int_{T}^{\infty}|h(x)|\,dx\leq C(T)\|h\|_{\bar{w}},\qquad \textit{where } C(T)=K(T^{-\epsilon/2}\wedge1), $$

for some \(K>0\) and \(\epsilon>0\).

Proof

Since \(\bar{w}(x)\geq1\), we can write for all \(h\in H_{\bar{w}}^{0}\) that

$$\begin{aligned} |h(x)| &=\left|\int_{x}^{\infty}h'(s)\,ds\right|\leq\| h\|_{\bar{w}} \left (\int _{x}^{\infty}\frac{ds}{\bar{w}(s)}\right)^{1/2}\\ &\leq\|h\|_{\bar{w}}\left(\int_{x}^{\infty}K(s^{-(3+\epsilon)}\wedge 1)\,ds\right)^{1/2}\\ &\leq\|h\|_{\bar{w}} K(x^{-(1+\epsilon/2)}\wedge1), \end{aligned}$$

where the constant \(K\) can change from line to line. Thus,

$$\int_{T}^{\infty}|h(x)|\,dx\leq\|h\|_{\bar{w}}K(T^{-\epsilon/2}\wedge1). $$

 □

Lemma A.1 ensures that each element of the vector \(\sigma_{t}^{\infty}\) in (3.9) is well defined. The next lemma ensures that \(\sigma_{t}^{\infty}\in{\ell^{2}}\) and the right-hand side of (2.8) is well defined.

Lemma A.2

\(\int_{0}^{t}\|\sigma_{s}^{\infty}\|_{\ell^{2}}^{2}\,ds\leq C^{2}(0) tD_{2}^{2}\).

Proof

By Lemma A.1, \(\int_{0}^{\infty}|\sigma_{s}^{j}(u)|\,du\leq C(0)\|\sigma_{s}^{j}\|_{\bar{w}}\). This implies

$$\begin{aligned} {\int_{0}^{t}\|\sigma_{s}^{\infty}\|_{\ell^{2}}^{2}\,ds} &\leq\int_{0}^{t}\sum_{j\in\mathbb{N}}\left(\int_{0}^{\infty}|\sigma_{s}^{j}(u)| \,du\right)^{2} \,ds\\ &\leq\int_{0}^{t}\sum_{j\in\mathbb{N}}C^{2}(0) \|\sigma_{s}^{j}\|_{\bar{w}}^{2} \,ds\\ &=C^{2}(0)\int_{0}^{t} \|\sigma_{s}\|^{2}_{L_{2}^{0}(H_{\bar{w}})}\,ds\\ &\leq C^{2}(0) tD_{2}^{2}, \end{aligned}$$

where \(D_{2}\) is the volatility bound in (2.5). □

By the above lemma, the last integral in (2.8) is well defined. The stochastic integral \(\int_{0}^{t} \sigma_{s}^{\infty}\cdot dW^{\mathbb{P}}_{s}\) is well defined due to Itô’s isometry. The first integral in (2.8) is bounded by

$$ \frac{1}{2}\int_{0}^{t} (\|\gamma_{s}\|_{\ell^{2}}^{2}+\|\sigma_{s}^{\infty}\| _{\ell ^{2}}^{2})\,ds\leq\frac{1}{2}\int_{0}^{t}\varGamma(s)^{2}\,ds+\frac{1}{2}C^{2}(0)tD_{2}^{2}, $$

which is well defined by the fact that \(\varGamma\in L_{2}(\mathbb{R}_{+})\). Thus the right-hand side of (2.8) is well defined.

We now turn to the verification of (A.1). We first rewrite \(P_{t}^{T}/P_{0}^{T}\) and \(B_{t}^{\infty}\) defined by (2.8) in terms of the ℚ-Brownian motion \(W^{\mathbb {Q}}\) as

$$\begin{aligned} \frac{P_{t}^{T}}{P_{0}^{T}}&=A_{t}\exp\bigg(- \int_{0}^{t} \sigma_{s}^{T}\cdot dW^{\mathbb {Q}}_{s}-\frac{1}{2} \int_{0}^{t} \|\sigma_{s}^{T}\|^{2}_{\ell^{2}}\,ds\bigg),\\ B_{t}^{\infty}&=A_{t}\exp\bigg(- \int_{0}^{t} \sigma_{s}^{\infty}\cdot dW^{\mathbb {Q}}_{s}-\frac{1}{2} \int_{0}^{t}\|\sigma_{s}^{\infty}\|_{\ell^{2}}^{2}\,ds\bigg). \end{aligned}$$

Fix \(t\geq0\). We note that the condition (A.1) can be written under any locally equivalent probability measure \({\mathbb {Q}}^{V}\) associated with any valuation process \(V\) as

$$ \lim_{T\rightarrow\infty}\mathbb{E}^{\mathbb{Q}^{V}}\bigg[\bigg|\frac {B_{t}^{T}}{V_{t}} - \frac{B_{t}^{\infty}}{V_{t}}\bigg|\bigg]=0. $$

We can use this freedom to choose the measure convenient for the setting at hand. Here we choose to verify it under ℚ, i.e., to show that

$$ \lim_{T\rightarrow\infty}\mathbb{E}^{\mathbb{Q}}\bigg[\bigg|\frac {P_{t}^{T}}{P_{0}^{T}A_{t}}- \frac{B_{t}^{\infty}}{A_{t}}\bigg|\bigg]=0. $$
(A.2)

We first introduce some notation. For \(v\in[0,t]\) and \(T\in[t,\infty]\), define

$$\begin{aligned} j_{v}^{T} &:= \int_{0}^{v} \sigma_{s}^{T}\cdot dW^{\mathbb{Q}}_{s},\\ k_{v}^{T} &:=\frac{1}{2} \int_{0}^{v} \|\sigma_{s}^{T}\|_{\ell^{2}}^{2}\,ds,\\ \bar{\sigma}_{v}^{T}&:=\sigma_{v}^{\infty}-\sigma_{v}^{T}=\int_{T-v}^{\infty}\sigma _{v}(u)\,du,\\ z_{v}^{T} &:=\frac{1}{2}\int_{0}^{v}\|\bar{\sigma}_{s}^{T}\|_{\ell^{2}}^{2}\,ds,\\ Y_{v}^{T} &:=e^{-(j_{v}^{T}-j_{v}^{\infty})-z_{v}^{T}}. \end{aligned}$$

For \(p\geq1\) and a random variable \(X\), we denote \(\|X\|_{p}:=(\mathbb{E}^{\mathbb{Q}}[|X|^{p}])^{1/p}\), as long as the expectation is well defined. Then (A.2) can be rewritten as

$$ \lim_{T\rightarrow\infty} \|e^{-j_{t}^{T}-k_{t}^{T}}-e^{-j_{t}^{\infty}-k_{t}^{\infty}}\|_{1}=0. $$

By Hölder’s inequality,

$$ \limsup_{T\rightarrow\infty} \|e^{-j_{t}^{T}-k_{t}^{T}}-e^{-j_{t}^{\infty}-k_{t}^{\infty}}\|_{1} \leq\limsup_{T\rightarrow\infty}\|e^{-j_{t}^{\infty}-k_{t}^{\infty}}\|_{2}\| e^{-(j_{t}^{T}-j_{t}^{\infty})-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2}. $$

Lemma A.3 and A.4 below show that \(\|e^{-j_{t}^{\infty}-k_{t}^{\infty}}\|_{2}\) is finite and

$$\lim_{T\rightarrow\infty} \|e^{-(j_{t}^{T}-j_{t}^{\infty})-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2}=0, $$

respectively.

Lemma A.3

For each \(t>0\), there exists \(C\) such that

$$ \sup_{v\leq t}\|Y_{v}^{T}\|_{2}\leq C < \infty \qquad \textit{and}\qquad \| e^{-j_{t}^{\infty}-k_{t}^{\infty}}\|_{2}\leq C< \infty. $$

Proof

We begin by considering the process \((Y_{v}^{T})^{2}=e^{-(2j_{v}^{T}-2j_{v}^{\infty})-4z_{v}^{T}+2z_{v}^{T}}\) for \(t\in [0,T]\). By Itô’s formula, \((e^{-(2j_{v}^{T}-2j_{v}^{\infty})-4z_{v}^{T}})\) is a local martingale. Since it is also positive, it is a supermartingale (in fact, it is a true martingale due to Lemma A.2 and Novikov’s criterion). Therefore for all \(v\leq t\),

$$ \mathbb{E}^{\mathbb{Q}}[e^{-(2j_{v}^{T}-2j_{v}^{\infty})-4z_{v}^{T}}]\leq1. $$

Similarly to Lemma A.2, \(|z_{v}^{T}|\leq\frac {1}{2}C^{2}(T-v)vD_{2}^{2}\). Thus

$$\|Y_{v}^{T}\|_{2}^{2}=\mathbb{E}^{\mathbb{Q}}[e^{-(2j_{v}^{T}-2j_{v}^{\infty})-4z_{v}^{T}+2z_{v}^{T}}]\leq e^{C^{2}(0)vD_{2}^{2}}. $$

This implies

$$ \sup_{v\leq t} \|Y_{v}^{T}\|_{2}\leq e^{\frac{1}{2}C^{2}(0)tD_{2}^{2}}. $$

Similarly, \((e^{-j_{t}^{\infty}-k_{t}^{\infty}})^{2}=e^{-2j_{t}^{\infty}-4k_{t}^{\infty}+2k_{t}^{\infty}}\). The process \((e^{-2j_{t}^{\infty}-4k_{t}^{\infty}})\) is a supermartingale, and \(k_{t}^{\infty}\leq\frac{1}{2}C^{2}(0)tD_{2}^{2}\) by Lemma A.2. Thus,

$$\|e^{-j_{t}^{\infty}-k_{t}^{\infty}}\|_{2}\leq e^{C^{2}(0)tD_{2}^{2}}. $$

 □

Lemma A.4

We have

$$ \lim_{T\rightarrow\infty} \|e^{-(j_{t}^{T}-j_{t}^{\infty})-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2}=0. $$
(A.3)

Proof

We need the following two intermediate lemmas. □

Lemma A.5

For \(T\geq t\), \(\sup_{v\leq t}|k_{v}^{T}-k_{v}^{\infty}|\leq C(0)C(T-t)tD_{2}^{2}\).

Proof

We estimate

$$\begin{aligned} {\sup_{v\leq t}|k_{v}^{T}{-}k_{v}^{\infty}|} &={\sup_{v\leq t}\bigg|\frac {1}{2}\sum_{j\in\mathbb{N}}\int_{0}^{v} \bigg(\Big(\int_{0}^{T-s} {+}\int _{0}^{\infty}\Big) \sigma_{s}^{j}(u)\,du\bigg)\bigg(\int_{T-s}^{\infty} \sigma _{s}^{j}(u)\,du\bigg)\,ds\bigg|}\\ &\leq{\sum_{j\in\mathbb{N}}\int_{0}^{t} \left(\int_{0}^{\infty}|\sigma _{s}^{j}(u)|\,du\right)\left(\int_{T-s}^{\infty}|\sigma_{s}^{j}(u)|\,du\right) \,ds}\\ &\leq{\sum_{j\in\mathbb{N}} \int_{0}^{t} C(0) \|\sigma_{s}^{j}\|_{\bar{w}} C(T-s)\|\sigma_{s}^{j}\|_{\bar{w}} \,ds}\\ &=C(0)C(T-t)\int_{0}^{t}\sum_{j\in\mathbb{N}} \|\sigma_{s}^{j}\| _{\bar {w}}^{2} \,ds\\ &={C(0)C(T-t)\int_{0}^{t} \|\sigma_{s}\|_{L_{2}^{0}(H_{\bar{w}})}^{2} \,ds}\\ &\leq C(0)C(T-t)t D_{2}^{2}. \end{aligned}$$

 □

Lemma A.6

We have

$$ \lim_{T\rightarrow\infty} \|Y_{t}^{T}-1\|_{2}=0. $$
(A.4)

Proof

By Itô’s formula,

$$ Y_{t}^{T}=1+ \int_{0}^{t} Y_{v}^{T}\bar{\sigma}_{v}^{T}\cdot dW^{\mathbb{Q}}_{v}. $$

By Itô’s isometry, we have

$$ \|Y_{t}^{T}-1\|_{2}^{2}=\mathbb{E}^{\mathbb{Q}}\bigg[\int_{0}^{t} \|Y_{v}^{T} \bar {\sigma}_{v}^{T}\|_{\ell^{2}}^{2} \,dv\bigg]. $$

By Lemma A.1, \(|\bar{\sigma}_{v}^{T,j}|\leq C(T-v)\| \sigma_{v}^{j}\|_{\bar{w}}\). Thus, using Lemma A.3 for the last inequality, we get

$$\begin{aligned} {\|Y_{t}^{T}-1\|_{2}^{2}} & \leq\mathbb{E}^{\mathbb{Q}}\bigg[\sum_{j\in \mathbb {N}}\int_{0}^{t} |Y_{v}^{T}|^{2} C^{2}(T-v)\|\sigma_{v}^{j}\|^{2}_{\bar{w}} \,dv\bigg]\\ & \leq C^{2}(T-t)\mathbb{E}^{\mathbb{Q}}\bigg[\int_{0}^{t} |Y_{v}^{T}|^{2} \sum _{j\in\mathbb{N}}\|\sigma_{v}^{j}\|^{2}_{\bar{w}} \,dv\bigg]\\ &=C^{2}(T-t)\mathbb{E}^{\mathbb{Q}}\bigg[\int_{0}^{t} |Y_{v}^{T}|^{2} \|\sigma _{v}\| ^{2}_{L^{0}_{2}(H_{\bar{w}})} \,dv\bigg]\\ &\leq C^{2}(T-t)\mathbb{E}^{\mathbb{Q}}\bigg[\int_{0}^{t} |Y_{v}^{T}|^{2} D_{2}^{2}\,dv\bigg]\\ &\leq C^{2}(T-t)D_{2}^{2}\int_{0}^{t} \mathbb{E}^{\mathbb{Q}}[|Y_{v}^{T}|^{2}] \,dv\\ &\leq C^{2}(T-t)D_{2}^{2}\int_{0}^{t} C^{2} \,dv \\ &=C^{2}(T-t)D_{2}^{2}C^{2}t. \end{aligned}$$

Since \(\lim_{T\rightarrow\infty}C(T-t)=0\), (A.4) is verified. □

Now we return to the proof of Lemma A.4. We have

$$\begin{aligned} \|e^{-(j_{t}^{T}-j_{t}^{\infty})-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2} & =\|Y_{t}^{T} e^{z_{t}^{T}-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2}\\ & \leq\|(Y_{t}^{T}-1)e^{z_{t}^{T}-(k_{t}^{T}-k_{t}^{\infty})}\|_{2}+\| e^{z_{t}^{T}-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2}. \end{aligned}$$

Recall that by Lemma A.5, \(|k_{t}^{T}-k_{t}^{\infty}|\leq C(0)C(T-t)tD_{2}^{2}\). Using the same approach as in the proof of Lemma A.2, we can show that

$$|z_{t}^{T}|\leq\frac{1}{2}C^{2}(T-t)tD_{2}^{2}. $$

Thus we have

$$\begin{aligned} \|e^{-(j_{t}^{T}-j_{t}^{\infty})-(k_{t}^{T}-k_{t}^{\infty})}-1\|_{2} & \leq\|Y_{t}^{T}-1\|_{2} e^{\frac{1}{2}C^{2}(T-t)tD_{2}^{2}+C(0)C(T-t)tD_{2}^{2}}\\ &\quad{}+e^{\frac{1}{2}C^{2}(T-t)tD_{2}^{2}+C(0)C(T-t)tD_{2}^{2}}-1. \end{aligned}$$

Finally, (A.3) is verified by using Lemma A.6 and \(\lim_{T\rightarrow\infty} C(T-t)=0\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Linetsky, V. Long-term factorization in Heath–Jarrow–Morton models. Finance Stoch 22, 621–641 (2018). https://doi.org/10.1007/s00780-018-0365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-018-0365-7

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation