Skip to main content
Log in

Model-independent bounds for option prices—a mass transport approach

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In this paper we investigate model-independent bounds for exotic options written on a risky asset using infinite-dimensional linear programming methods. Based on arguments from the theory of Monge–Kantorovich mass transport, we establish a dual version of the problem that has a natural financial interpretation in terms of semi-static hedging. In particular we prove that there is no duality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For the sake of simplicity, we assume zero interest rate and no cash/yield dividends. This assumption can be relaxed by considering the process (f t ) introduced in [17] (see Eq. (14)) which has the property to be a local martingale.

  2. The cumulative distribution function of μ i can be read off from the call prices through \(F_{i}(K)= 1 - \lim_{\varepsilon\downarrow0} 1/\varepsilon[ \mathcal{C}(t_{i},K)-\mathcal{C}(t_{i},K+\varepsilon) ]\) for i=1,…,n. Concerning the mathematical finance application it would be sufficient to consider strikes K≥0 and marginals which are concentrated on the positive half-line. We prefer to go with the more general case since the proofs are not more complicated. A technical difference is that call prices satisfy only \(\lim_{K\to-\infty}\mathcal{C}(t_{i},K) - K = s_{0}\) rather than the simpler \(\mathcal{C}(t_{i},0) = s_{0}\) in the case where S is assumed to be nonnegative.

  3. Similar strategies are considered in [10, 14] where they are used to subreplicate a European option based on finitely many given call options.

  4. It might be expected that the delta strategy in (1.2) should also include a constant Δ 0 multiplier of (s 1s 0) corresponding to an initial forward position. However, this term is not necessary as it can be subsumed into the term u 1.

  5. In more financial terms, this means that \(\mathcal{C}(t,K)\) is increasing in t for each fixed \(K\in\mathbb{R}\).

  6. See [36, 37] for an extensive account on the theory of optimal transportation.

  7. Most of the basic results are equally true for Polish probability spaces (X 1,μ 1),…,(X n ,μ n ), but we do not need this generality here.

  8. We should like to emphasize that the lower/upper bounds corresponding to different strikes K are attained by different martingale measures. This is not the case if we do not include the martingality constraint, as in this case the upper/lower bounds are attained by the co-monotone resp. anti-monotone coupling for each strike K (see for instance [36, Sect. 2.2.2]).

  9. In probabilistic terms, the measure \(\mathbb{Q}_{s_{1}}\) is the conditional distribution of S 2 under \(\mathbb{Q}\) given that S 1=s 1.

  10. We emphasize that while this simple guess works in the present setting, the situation is more subtle for general distributions.

  11. Formally Hobson and Neuberger are interested to maximize the price of the payoff |S 2S 1| while we want to minimize the price of−|S 2S 1|. Mathematically, the two problems are of course the same. We haven chosen the latter formulation to be consistent with the notation in our main result in Theorem 1.1.

  12. Some progress in this direction is made in [4, Appendix A]. (Note added in revision.)

  13. I.e., \(g^{**}:\mathbb{R}\to\mathbb{R}\) is the largest convex function smaller than or equal to g.

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)

    Book  Google Scholar 

  2. Albrecher, H., Mayer, P.A., Schoutens, W.: General lower bounds for arithmetic Asian option prices. Appl. Math. Finance 15, 123–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Pratelli, A.: Existence and stability results in the L 1 theory of optimal transportation. In: Caffarelli, L.A., Salsa, S. (eds.) Optimal Transportation and Applications, Martina Franca, 2001. Lecture Notes in Mathematics, vol. 1813, pp. 123–160. Springer, Berlin (2003)

    Chapter  Google Scholar 

  4. Beiglböck, M., Juillet, N.: On a problem of optimal transport under marginal martingale constraints. arXiv:1208.1509 (2012)

  5. Bergomi, L.: Smile dynamics II. Risk 18, 67–73 (2005)

    Google Scholar 

  6. Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Oper. Res. 50, 358–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, H., Hobson, D., Rogers, L.C.G.: The maximum of a martingale constrained by an intermediate law. Probab. Theory Relat. Fields 119, 558–578 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carr, P., Lee, R.: Hedging variance options on continuous semimartingales. Finance Stoch. 14, 179–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Deelstra, G., Dhaene, J., Vanmaele, M.: Static super-replicating strategies for a class of exotic options. Insur. Math. Econ. 42, 1067–1085 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance 31, 3377–3397 (2007)

    Article  Google Scholar 

  11. Cox, A.M.G., Obłój, J.: Robust hedging of double touch barrier options. SIAM J. Financ. Math. 2, 141–182 (2011)

    Article  MATH  Google Scholar 

  12. Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15, 573–605 (2011)

    Article  MathSciNet  Google Scholar 

  13. Cox, A.M.G., Wang, J.: Root’s barrier: construction, optimality and applications to variance options. Ann. Appl. Probab. (2011, to appear). arXiv:1104.3583

  14. Davis, M.H.A., Hobson, D.: The range of traded option prices. Math. Finance 17, 1–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)

    Google Scholar 

  16. Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. SSRN eLibrary (2011). http://ssrn.com/abstract=1912477

  17. Henry-Labordère, P.: Calibration of local stochastic volatility models to market smiles. Risk September, 112–117 (2009)

  18. Henry-Labordère, P.: Automated option pricing: numerical methods. SSRN eLibrary (2011). http://ssrn.com/abstract=1968344

  19. Henry-Labordère, P., Touzi, N.: Maximum maximum of martingales given marginals. SSRN eLibrary (2012). http://ssrn.com/abstract=2031461

  20. Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998)

    Article  MATH  Google Scholar 

  21. Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option prices. In: Carmona, R.A., Çinlar, E., Ekeland, I., Jouini, E., Scheinkman, J.A., Touzi, N. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, vol. 2003, pp. 267–318. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. Hobson, D.: Personal communication, February 2012

  23. Hobson, D., Klimmek, M.: Model independent hedging strategies for variance swaps. Finance Stoch. 16, 611–649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hobson, D., Laurence, P., Wang, T.H.: Static-arbitrage optimal subreplicating strategies for basket options. Insur. Math. Econ. 37, 553–572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hobson, D., Laurence, P., Wang, T.H.: Static-arbitrage upper bounds for the prices of basket options. Quant. Finance 5, 329–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hobson, D., Neuberger, A.: Robust bounds for forward start options. Math. Finance 22, 31–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hobson, D., Pedersen, J.L.: The minimum maximum of a continuous martingale with given initial and terminal laws. Ann. Probab. 30, 978–999 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb. 67, 399–432 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laurence, P., Wang, T.H.: What’s a basket worth? Risk February, 73–77 (2004)

  30. Laurence, P., Wang, T.H.: Sharp upper and lower bounds for basket options. Appl. Math. Finance 12, 253–282 (2005)

    Article  MATH  Google Scholar 

  31. Madan, D.B., Yor, M.: Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8, 509–536 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Neuberger, A., Hodges, S.D.: Rational bounds on the prices of exotic options. SSRN eLibrary (2000). http://ssrn.com/abstract=239711

  33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007). xxii+1235

    MATH  Google Scholar 

  34. Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. Strasser, H.: Mathematical Theory of Statistics. Statistical Experiments and Asymptotic Decision Theory. de Gruyter Studies in Mathematics, vol. 7. de Gruyter, Berlin (1985)

    Book  MATH  Google Scholar 

  36. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  37. Villani, C.: Optimal Transport. Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Associate Editor and the extraordinarily careful referees for their comments and in particular for pointing out a mistake in an earlier version of this article. We also benefitted from remarks by Johannes Muhle-Karbe.

The first author thanks the FWF for partial support through grant P21209. The third author acknowledges support from ERC grant No. 247033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Beiglböck.

Appendix

Appendix

As a special case of [28, Theorem 2.14], we have the duality equation

for every lower semi-continuous cost function \(\varPhi:\mathbb{R}^{n}\to [0,\infty]\). The main task in the subsequent proof of Proposition 2.1 is to show that the duality equation is obtained if one restricts to functions in the class \(\mathcal{S}\) in the dual problem.

Proof of Proposition 2.1

As in the proof of Theorem 1.1, it is sufficient to prove the duality equation in the case Φ≥0.

Given a bounded continuous function f and ε>0, there is for every i=1,…,n some \(u\in\mathcal{S}\) such that fu and ∫(fu) i <ε. Therefore we may change the class of admissible functions from \(\mathcal{S}\) to \(C_{b}(\mathbb{R})\), i.e., it suffices to prove

(A.1)

We first show this under the additional assumption that \(\varPhi \in C_{c}(\mathbb{R}^{n})\). By [28, Theorem 2.14], there exist for each η>0 μ i -integrable functions u i , i=1,…,n, such that

$$P_\mathrm{MK}(\varPhi)-\sum_{i=1}^n \int u_i\, d\mu_i\leq\eta $$

and u 1⊕⋯⊕u n Φ. Note that the latter inequality implies that u 1,…,u n are uniformly bounded since Φ is uniformly bounded from above.

To replace u 1 by a function in C b , we consider H=Φ−(u 1⊕⋯⊕u n ) and define

$$ \tilde{u}_1 (x_1):= \inf_{x_2,\ldots, x_n\in\mathbb{R}} H(x_1, \ldots, x_n) $$

for \(x_{1}\in\mathbb{R}\). We claim that \(\tilde{u}_{1}\) is (uniformly) continuous. Indeed, as Φ is uniformly continuous, for every ε>0 there exists δ>0 such that whenever \(x,x'\in \mathbb{R}\), |xx′|<δ, then

Thus we obtain

$$| \tilde{u}_1 (x)-\tilde{u}_1 (x')|=\Big|\inf_{x_2,\ldots, x_n\in \mathbb{R}} H(x,x_2, \ldots, x_n) - \inf_{x_2,\ldots, x_n\in\mathbb{R}} H(x',x_2, \ldots, x_n)\Big|\leq\varepsilon $$

whenever |xx′|<δ. By definition \(\tilde{u}_{1}\) is also bounded from below and satisfies \(\tilde{u}_{1}\geq u_{1}\) as well as

$$\tilde{u}_1 \oplus u_2\oplus\cdots\oplus u_n\leq\varPhi. $$

Iteratively replacing the functions u 2,…,u n in the same fashion, we obtain (A.1) in the case \(\varPhi\in C_{c}(\mathbb{R}^{n})\).

Finally, the same argument as in the proof of Theorem 1.1 gives the duality relation in the case of a general, lower semi-continuous function \(\varPhi:\mathbb{R}^{n}\to[0,\infty ]\). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beiglböck, M., Henry-Labordère, P. & Penkner, F. Model-independent bounds for option prices—a mass transport approach. Finance Stoch 17, 477–501 (2013). https://doi.org/10.1007/s00780-013-0205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-013-0205-8

Keywords

Mathematics Subject Classification

JEL Classification

Navigation