Skip to main content
Log in

The mechanism of antiproliferative activity of the oxaliplatin pyrophosphate derivative involves its binding to nuclear DNA in cancer cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

(1R,2R-diaminocyclohexane)(dihydropyrophosphato) platinum(II), also abbreviated as RRD2, belongs to a class of potent antitumor platinum cytostatics called phosphaplatins. Curiously, several published studies have suggested significant mechanistic differences between phosphaplatins and conventional platinum antitumor drugs. Controversial findings have been published regarding the role of RRD2 binding to DNA in the mechanism of its antiproliferative activity in cancer cells. This prompted us to perform detailed studies to confirm or rule out the role of RRD2 binding to DNA in its antiproliferative effect in cancer cells. Here, we show that RRD2 exhibits excellent antiproliferative activity in various cancer cell lines, with IC50 values in the low micromolar or submicromolar range. Moreover, the results of this study demonstrate that DNA lesions caused by RRD2 contribute to killing cancer cells treated with this phosphaplatin derivative. Additionally, our data indicate that RRD2 accumulates in cancer cells but to a lesser extent than cisplatin. On the other hand, the efficiency of cisplatin and RRD2, after they accumulate in cancer cells, in binding to nuclear DNA is similar. Our results also show that RRD2 in the medium, in which the cells were cultured before RRD2 accumulated inside the cells, remained intact. This result is consistent with the view that RRD2 is activated by releasing free pyrophosphate only in the environment of cancer cells, thereby allowing RRD2 to bind to nuclear DNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116:3436–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dilruba S, Kalayda GV (2016) Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77:1103–1124

    Article  CAS  PubMed  Google Scholar 

  3. Brabec V, Hrabina O, Kasparkova J (2017) Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 351:2–31

    Article  CAS  Google Scholar 

  4. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  CAS  PubMed  Google Scholar 

  5. Babak MV, Zhi Y, Czarny B, Toh TB, Hooi L, Chow EK-H, Ang WH, Gibson D, Pastorin G (2019) Dual-targeting dual-action platinum(IV) platform for enhanced anticancer activity and reduced nephrotoxicity. Angew Chem Int Ed 58:8109–8114

    Article  CAS  Google Scholar 

  6. Novohradsky V, Pracharova J, Kasparkova J, Imberti C, Bridgewater HE, Sadler PJ, Brabec V (2020) Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug. Inorg Chem Front 7:4150–4159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imberti C, Zhang P, Huang H, Sadler PJ (2020) New designs for phototherapeutic transition metal complexes. Angew Chem Int Ed 59:61–73

    Article  CAS  Google Scholar 

  8. Bose RN, Moghaddas S, Belkacemi L, Tripathi S, Adams NR, Majmudar P, McCall K, Dezvareh H, Nislow C (2015) Absence of activation of DNA repair genes and excellent efficacy of phosphaplatins against human ovarian cancers: implications to treat resistant cancers. J Med Chem 58:8387–8401

    Article  CAS  PubMed  Google Scholar 

  9. Bose RN, Maurmann L, Mishur RJ, Yasui L, Gupta S, Grayburn WS, Hofstetter H, Salley T (2008) Non-DNA-binding platinum anticancer agents: cytotoxic activities of platinum-phosphato complexes towards human ovarian cancer cells. Proc Natl Acad Sci USA 105:18314–18319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moghaddas S, Majmudar P, Marin R, Dezvareh H, Qi C, Soans E, Bose RN (2012) Phosphaplatins, next generation platinum antitumor agents: a paradigm shift in designing and defining molecular targets. Inorg Chim Acta 393:173–181

    Article  CAS  Google Scholar 

  11. Belkacemi L, Atkins JL, Yang LU, Gadgil P, Sater AK, Chow DS, Bose RN, Zhang SX (2018) Phosphaplatin antitumor effect enhanced by liposomes partly via an up-regulation of PEDF in breast cancer. Anticancer Res 38:623–646

    CAS  PubMed  Google Scholar 

  12. Corte-Rodríguez M, Espina M, Sierra LM, Blanco E, Ames T, Montes-Bayón M, Sanz-Medel A (2015) Quantitative evaluation of cellular uptake, DNA incorporation and adduct formation in cisplatin sensitive and resistant cell lines: comparison of different Pt-containing drugs. Biochem Pharmacol 98:69–77

    Article  PubMed  Google Scholar 

  13. Curci A, Gandin V, Marzano C, Hoeschele JD, Natile G, Margiotta N (2017) Novel kiteplatin pyrophosphate derivatives with improved efficacy. Inorg Chem 56:7482–7493

    Article  CAS  PubMed  Google Scholar 

  14. Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V (2017) Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 46:14139–14148

    Article  CAS  PubMed  Google Scholar 

  15. Pracharova J, Saltarella T, Radosova Muchova T, Scintilla S, Novohradsky V, Novakova O, Intini FP, Pacifico C, Natile G, Ilik P, Brabec V, Kasparkova J (2015) Novel antitumor cisplatin and transplatin derivatives containing 1-methyl-7-azaindole: synthesis, characterization, and cellular responses. J Med Chem 58:847–859

    Article  CAS  PubMed  Google Scholar 

  16. Mackay FS, Woods JA, Moseley H, Ferguson J, Dawson A, Parsons S, Sadler PJ (2006) A photoactivated trans diammine platinum complex as cytotoxic as cisplatin. Chem Eur J 12:3155–3161

    Article  CAS  PubMed  Google Scholar 

  17. Woods JA, Bilton RF, Young AJ (1999) b-Carotene enhances hydrogen peroxide-induced DNA damage in human hepatocellular HepG2 cells. FEBS Lett 449:255–258

    Article  CAS  PubMed  Google Scholar 

  18. Robichova S, Slamenova D, Gabelova A, Sedlak J, Jakubikova J (2004) An investigation of the genotoxic effects of N-nitrosomorpholine in mammalian cells. Chem Biol Interact 148:163–171

    Article  CAS  PubMed  Google Scholar 

  19. Johnson NP, Butour J-L, Villani G, Wimmer FL, Defais M, Pierson V, Brabec V (1989) Metal antitumor compounds: the mechanism of action of platinum complexes. Prog Clin Biochem Med 10:1–24

    Article  CAS  Google Scholar 

  20. Spanswick VJ, Hartley JM, Hartley JA (2010) Measurement of DNA interstrand crosslinking in individual cells using the single cell gel electrophoresis (Comet) assay. Methods Mol Biol 613:267–282

    Article  CAS  PubMed  Google Scholar 

  21. Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V (2006) Transplatin is cytotoxic when photoactivated: enhanced formation of DNA cross-links. J Med Chem 49:7792–7798

    Article  CAS  PubMed  Google Scholar 

  22. Kaminski R, Darbinyan A, Merabova N, Deshmane SL, White MK, Khalili K (2008) Protective role of Pur alpha to cisplatin. Cancer Biol Ther 7:1926–1935

    Article  CAS  PubMed  Google Scholar 

  23. Kreja L, Seidel HJ (2002) Evaluation of the genotoxic potential of some microbial volatile organic compounds (MVOC) with the comet assay, the micronucleus assay and the HPRT gene mutation assay. Mutation Res 513:143–150

    Article  CAS  PubMed  Google Scholar 

  24. Silva MJ, Costa P, Dias A, Valente M, Louro H, Boavida MG (2005) Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells. Environ Mol Mutagenesis 46:104–115

    Article  CAS  Google Scholar 

  25. Halámiková A, Heringová P, Kašpárková J, Intini FP, Natile G, Nemirovski A, Gibson D, Brabec V (2008) Cytotoxicity, mutagenicity, cellular uptake, DNA and glutathione interactions of lipophilic trans-platinum complexes tethered to 1-adamantylamine. J Inorg Biochem 102:1077–1089

    Article  PubMed  Google Scholar 

  26. Ames T, Price M (2019). Phosplatin Therapeutics, Inc USA

  27. Yang L, Moghaddas S, Dezvareh H, Belkacemi L, Bark SJ, Bose RN, Do LH (2016) Insights into the anti-angiogenic properties of phosphaplatins. J Inorg Biochem 164:5–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation [grant number 21-27514S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Brabec.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prachařová, J., Kostrhunová, H., Barbanente, A. et al. The mechanism of antiproliferative activity of the oxaliplatin pyrophosphate derivative involves its binding to nuclear DNA in cancer cells. J Biol Inorg Chem 28, 669–678 (2023). https://doi.org/10.1007/s00775-023-02017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-02017-x

Keywords

Navigation