Skip to main content
Log in

Mono- and dinuclear zinc complexes bearing identical bis(thiosemicarbazone) ligand that exhibit alkaline phosphatase-like catalytic reactivity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P–O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P–O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4 h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kimura E (2000) Dimetallic hydrolases and their models. Curr Opin Chem Biol 4:207–213

    Article  CAS  PubMed  Google Scholar 

  2. Weston J (2005) Mode of action of bi- and trinuclear zinc hydrolases and their synthetic analogues. Chem Rev 105:2151–2174

    Article  CAS  PubMed  Google Scholar 

  3. Mitić N, Smith SJ, Neves A, Guddat LW, Ga-han LR, Schenk G, (2006) The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106:3338–3363

    Article  Google Scholar 

  4. Jonas S, Hollfelder F (2009) Mapping catalytic promiscuity in the alkaline phosphatase superfamily Stefanie Jonas and Florian Hollfelder. Pure Appl Chem 81:731–742

    Article  CAS  Google Scholar 

  5. Jarenmark M, Csapó E, Singh J, Wöckel S, Farkas E, Meyer F, Haukka M, Nordlander E (2010) Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases. Dalton Trans 39:8183–8194

    Article  CAS  PubMed  Google Scholar 

  6. Schenk G, Mitić N, Hanson GR, Comba P, (2013) Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 257:473–482

    Article  CAS  Google Scholar 

  7. Lipscomb WN, Sträter N (1996) Recent Advances in Zinc Enzymology. Chem Rev 96:2375–2434

    Article  CAS  PubMed  Google Scholar 

  8. Oivanen M, Kuusela S, Lönnberg H (1998) Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by brønsted acids and bases. Chem Rev 98:961–990

    Article  CAS  PubMed  Google Scholar 

  9. Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121

    Article  CAS  PubMed  Google Scholar 

  10. Mol CD, Izumi T, Mitra S, Tainer JA (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403:451–456

    Article  CAS  PubMed  Google Scholar 

  11. Cleland WW, Hengge AC (2006) Enzymatic mechanisms of phosphate and sulfate transfer. Chem Rev 106:3252–3278

    Article  CAS  PubMed  Google Scholar 

  12. Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764:1823–1841

    Article  CAS  PubMed  Google Scholar 

  14. Nakanishi Y, Tan M, Ichiki T, Inoue A, Yoshihara J−i, Maekawa N, Takenoshita I, Yanagida K, Yamahira S, Yamaguchi S, Aoki J, Nagamune T, Yokomizo T, Shimizu T, Nakamura M (2018) Stepwise phosphorylation of leukotriene B4 receptor 1 defines cellular responses to leukotriene B4. Sci Signal 11:eaao5390.

  15. Cozzone AJ (1988) Protein phosphorylation in prokaryotes. Annu Rev Microbiol 42:97–125

    Article  CAS  PubMed  Google Scholar 

  16. Chang C, Stewart RC (1998) The two-component system: regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol 117:723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhai L, Kumar N, Panebra A, Zhao P, Parrill AL (2002) Khurana S (2002) Regulation of actin dynamics by tyrosine phosphorylation: identification of tyrosine phosphorylation sites within the actin-severing domain of villin. Biochemistry 41:11750–11760

    Article  CAS  PubMed  Google Scholar 

  18. Oakley GG, Patrick SM, Yao J, Carty MP, Turchi JJ, Dixon K (2003) RPA phosphorylation in mitosis alters DNA binding and protein−protein interactions. Biochemistry 42:3255–3264

    Article  CAS  PubMed  Google Scholar 

  19. Köhn M (2020) Turn and face the strange: a new view on phosphatases. ACS Cent Sci 6:467–477

    Article  PubMed  PubMed Central  Google Scholar 

  20. DuBois KP (1971) The toxicity of organophosphorus compounds to mammals. Bull World Health Organ 44:231–240

    PubMed Central  Google Scholar 

  21. Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43:139–144

    CAS  PubMed  Google Scholar 

  22. Ghanem E, Li Y, Xu C, Raushel FM (2007) Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX. Biochemistry 46:9032–9040

    Article  CAS  PubMed  Google Scholar 

  23. Schenk G, Mateen I, Ng T−K, Pedroso MM, Mitić N, Jafelicci M Jr, Marques RFC, Gahan LR, Ollis DL (2016) Organophosphate-degrading metallohydrolases: structure and function of potent catalysts for applications in bioremediation. Coord Chem Rev 317:122–131

    Article  CAS  Google Scholar 

  24. Mancin F, Scrimin P, Tecilla P (2012) Progress in artificial metallonucleases. Chem Commun 48:5545–5559

    Article  CAS  Google Scholar 

  25. Desbouis D, Troitsky IP, Belousoff MJ, Spiccia L, Graham B (2012) Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coord Chem Rev 256:897–937

    Article  CAS  Google Scholar 

  26. He C, Lippard SJ (2000) Modeling carboxylate-bridged dinuclear active sites in metalloenzymes using a novel naphthyridine-based dinucleating ligand. J Am Chem Soc 122:184–185

    Article  CAS  Google Scholar 

  27. Neves A, Lanznaster M, Bortoluzzi AJ, Peralta RA, Casellato A, Castellano EE, Herrald P, Riley MJ, Schenk G (2007) An unprecedented FeIII(μ-OH)ZnII complex that mimics the structural and functional properties of purple acid phosphatases. J Am Chem Soc 129:7486–7487

    Article  CAS  PubMed  Google Scholar 

  28. Bosch S, Comba P, Gahan LR, Schenk G (2014) Dinuclear Zinc(II) complexes with hydrogen bond donors as structural and functional phosphatase models. Inorg Chem 53:9036–9051

    Article  CAS  PubMed  Google Scholar 

  29. Dutta N, Haldar S, Vijaykumar G, Paul S, Chattopadhyay AP, Carrella L, Bera M (2018) Phosphatase-like activity of tetranuclear Iron(III) and Zinc(II) complexes. Inorg Chem 57:10802–10820

    Article  CAS  PubMed  Google Scholar 

  30. Hu Q, Jayasinghe−Arachchige VM, Zuchniarz J, Prabhakar R, (2019) Effects of the metal ion on the mechanism of phosphodiester hydrolysis catalyzed by metal-cyclen complexes. Front Chem 7:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Czescik J, Lyu Y, Neuberg S, Scrimin P, Mancin F (2020) Host–guest allosteric control of an artificial phosphatase. J Am Chem Soc 142:6837–6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeong H, Kang Y, Kim J, Kim B−K, Hong S (2019) Factors that determine thione(thiol)–disulfide interconversion in a bis(thiosemicarbazone) copper(II) complex. RSC Adv 9:9049–9052

    Article  CAS  Google Scholar 

  33. Armarego WLF, Chai CLL (2009) Purification of laboratory chemicals, 6th edn. Oxford, Pergamon Press

    Google Scholar 

  34. Matesanz AI, Cuadrado I, Pastor C, Souza P (2005) A novel sulfur-bridged dimeric Zinc(II) complex with 2,6-diacetylpyridine Bis(thiosemicarbazone). Z Anorg Allg Chem 631:780–784

    Article  CAS  Google Scholar 

  35. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  36. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  37. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  38. Becke AD (1993) A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 98:1372−1377

  39. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys 37:785−789.

  41. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A At Mol Opt Phys 38:3098–3100

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams−Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski, JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT

  43. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  44. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  45. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  46. Sanyal R, Chakraborty P, Zangrando E, Das D (2015) Phosphatase models: Synthesis, structure and catalytic activity of zinc complexes derived from a phenolic Mannich-base ligand. Polyhedron 97:55–65

    Article  CAS  Google Scholar 

  47. Batha S, Arman H, Larionov OV, Musie GT (2019) Zinc(II) complexes of a versatile heptadentate ligand as phosphohydrolase structural and functional mimics. Inorg Chim Acta 497:119077.

  48. Schroeder GK, Lad C, Wyman P, Williams NH, Wolfenden R (2006) The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc Natl Acad Sci USA 103:4052–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bosch S, Comba P, Gahan LR, Schenk G (2016) Asymmetric mono- and dinuclear GaIII and ZnII complexes as models for purple acid phosphatases. J Inorg Biochem 162:343–355

    Article  CAS  PubMed  Google Scholar 

  50. Daumann LJ, Dalle KE, Schenk G, McGeary RP, Bernhardt PV, Ollis DL, Gahan LR (2012) The role of Zn–OR and Zn–OH nucleophiles and the influence of para-substituents in the reactions of binuclear phosphatase mimetics. Dalton Trans 41:1695–1708

    Article  CAS  PubMed  Google Scholar 

  51. Mendes LL, Englert D, Fernandes C, Gahan LR, Schenk G, Horn A Jr (2016) Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans 45:18510–18521

    Article  CAS  PubMed  Google Scholar 

  52. Sakamoto T, Ojida A, Hamachi I (2009) Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)–Dpa complexes. Chem Commun 141−152.

  53. Paul TJ, Schenk G, Prabhakar R (2018) Formation of catalytically active binuclear center of glycerophosphodiesterase: a molecular dynamics study. J Phys Chem B 122:5797–5808

    Article  CAS  PubMed  Google Scholar 

  54. Sharma G, Hu Q, Jayasinghe−Arachchige VM, Paul TJ, Schenk G, Prabhakar R, (2019) Investigating coordination flexibility of glycerophosphodiesterase (GpdQ) through interactions with mono-, di-, and tri-phosphoester (NPP, BNPP, GPE, and paraoxon) substrates. Phys Chem Chem Phys 21:5499–5509

    Article  CAS  PubMed  Google Scholar 

  55. Sharma G, Jayasinghe−Arachchige VM, Hu Q, Schenk G, Prabhakar R, (2020) Effect of chemically distinct substrates on the mechanism and reactivity of a highly promiscuous metallohydrolase. ACS Catal 10:3684–3696

    Article  CAS  Google Scholar 

  56. Schenk G, Mitić N, Hanson GR, Comba P (2013) Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 257:473–482

    Article  CAS  Google Scholar 

  57. Fukuzumi S, Lee YM, Nam W (2020) Acid catalysis via acid-promoted electron transfer. Bull Kor Chem Soc 41:1217–1232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NRF of Korea through MSIP (NRF-2020R1C1C1008886 to S.H and 2021R1A2C1012851 to K.-B.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Bin Cho or Seungwoo Hong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, H., Vazquez-Lima, H., Jeong, H. et al. Mono- and dinuclear zinc complexes bearing identical bis(thiosemicarbazone) ligand that exhibit alkaline phosphatase-like catalytic reactivity. J Biol Inorg Chem 27, 37–47 (2022). https://doi.org/10.1007/s00775-021-01909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01909-0

Keywords

Navigation