Skip to main content
Log in

The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Zinc(II) (5), indium(III) (6), and lutetium(III) (7) phthalocyanines (Pcs) peripherally substituted with poly (ethylene glycol) (PEG) monomethyl ether 2000 (PEGME-2000) blocks were synthesized via Sonogashira coupling reaction with high yields and their photophysical, photochemical and photobiological properties were investigated. We elucidated the interactions of these compounds with calf thymus DNA and bovine serum albumin (BSA), and determined K(DNA) and K(BSA) binding constants at degrees of 105 and 106, respectively. Singlet oxygen quantum yields were found (Ф = 0.44, 0.54, and 0.68 for 5, 6, and 7, respectively). Thermodynamic parameters, as well as thermal denaturation profile of double-stranded CT-DNA were examined to determine the type of binding mode. According to our experimental data, we report that PEGME-2000 favors the formation of binary complex between DNA, and phthalocyanine complexes. Therein, thermodynamic data suggest that this binding mode is indeed spontaneous under reported conditions, and rather non-specific. Additionally, Pcs 5, 6, and 7 substituted with PEGME-2000 blocks showed antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as fungi (yeast), and Pc 5 had the highest antimicrobial activity among them, as revealed by disc diffusion assay results. In short, our results suggest that these compounds could be used for photodynamic therapy, they have both antibacterial and antifungal activity, and the binding ability of new phthalocyanines 5, 6, and 7 with BSA paves the way for their utilization as drug vehicle in blood plasma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pinto SMA, Tomé VA, Calvete MJF, Pereira MM, Burrows HD, Cardoso AMS, Pallier A, Castro MMCA, Toth E, Geraldes CFGC (2016) The quest for biocompatible phthalocyanines for molecular imaging: photophysics, relaxometry and cytotoxicity studies. J Inorg Biochem 154:50–59

    Article  PubMed  CAS  Google Scholar 

  2. Durmuş M, Ahsen V, Nyokong T (2007) Photophysical and photochemical studies of long chain-substituted zinc phthalocyanines. J Photochem Photobiol A Chem 186:323–329

    Article  CAS  Google Scholar 

  3. Lo P-C, Leung SCH, Chan EYM, Fong W-P, Ko W-H, Ng DKP (2007) Photodynamic effects of a novel series of silicon(IV) phthalocyanines against human colon adenocarcinoma cells. Photodiagn Photodyn Ther 4:117–123

    Article  CAS  Google Scholar 

  4. Bandera Y, Burdette MK, Shetzline JA, Jenkins R, Creager SE, Foulger SH (2016) Synthesis of water soluble axially disubstituted silicon (IV) phthalocyanines with alkyne and azide functionality. Dye Pigment 125:72–79

    Article  CAS  Google Scholar 

  5. Uslan C, İşleyen ND, Öztürk Y, Yıldız BT, Çakar ZP, Göksel M, Gürsel YH, Sesalan BŞ (2018) A novel of PEG-conjugated phthalocyanine and evaluation of its photocytotoxicity and antibacterial properties for photodynamic therapy. J Porphyr Phthalocyanines 22:10–24

    Article  CAS  Google Scholar 

  6. Liu J-Y, Jiang X-J, Fong W-P, Ng DKP (2008) Highly photocytotoxic 1,4-dipegylated zinc(II) phthalocyanines. Effects of the chain length on the in vitro photodynamic activities. Org Biomol Chem 6:4560–4566

    Article  PubMed  CAS  Google Scholar 

  7. Li H, Fronczek FR, Vicente MGH (2011) Pegylated phthalocyanines: synthesis and spectroscopic properties. Tetrahedron Lett 52:6675–6678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bai M, Lo P-C, Ye J, Wu C, Fong W-P, Ng DKP (2011) Facile synthesis of pegylated zinc(ii) phthalocyanines via transesterification and their in vitro photodynamic activities. Org Biomol Chem 9:7028–7032

    Article  PubMed  CAS  Google Scholar 

  9. Mineo P, Alicata R, Micali N, Villari V, Scamporrino E (2012) Water-soluble star polymers with a phthalocyanine as the core and poly(ethylene glycol) chains as branches. J Appl Polym Sci 126:1359–1368

    Article  CAS  Google Scholar 

  10. Tuncel S, Dumoulin F, Gailer J, Sooriyaarachchi M, Atilla D, Durmuş M, Bouchu D, Savoie H, Boyle RW, Ahsen V (2011) A set of highly water-soluble tetraethyleneglycol-substituted Zn(ii) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity. Dalt Trans 40:4067–4079

    Article  CAS  Google Scholar 

  11. Li M, Khoshdel E, Haddleton DM (2013) Synthesis of water soluble PEGylated (copper) phthalocyanines via Mitsunobu reaction and Cu(i)-catalysed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Polym Chem 4:4405–4411

    Article  CAS  Google Scholar 

  12. Dinçer H, Mert H, Çalışkan E, Atmaca GY, Erdoğmuş A (2015) Synthesis and photophysicochemical studies of poly(ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines. J Mol Struct 1102:190–196

    Article  CAS  Google Scholar 

  13. Jin Y, Zhang X, Zhang B, Kang H, Du L, Li M (2015) Nanostructures of an amphiphilic zinc phthalocyanine polymer conjugate for photodynamic therapy of psoriasis. Colloids Surfaces B Biointerfaces 128:405–409

    Article  PubMed  CAS  Google Scholar 

  14. Li YH, Zhao D, Li Y, Liu Y, Duan Q, Kakuchi T (2017) Synthesis of water-soluble and thermoresponsive phthalocyanine ended block copolymers as potential photosensitizer. Dye Pigment 142:88–99

    Article  CAS  Google Scholar 

  15. Teles Ferreira J, Pina J, Alberto Fontes Ribeiro C, Fernandes R, Tome JPC, Rodriguez-Morgade MS, Torres T (2017) PEG-containing ruthenium phthalocyanines as photosensitizers for photodynamic therapy: synthesis, characterization and in vitro evaluation. J Mater Chem B 5:5862–5869

    Article  CAS  Google Scholar 

  16. Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17:245–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28

    Article  PubMed  CAS  Google Scholar 

  18. Bonnett R, Buckley DG, Burrow T, Galia ABB, Saville B, Songca SP (1993) Photobactericidal materials based on porphyrins and phthalocyanines. J Mater Chem 3:323–324

    Article  CAS  Google Scholar 

  19. Kliukiené R, Maroziené A, Cénas N, Becker K, Blanchard JS (1996) Photoinactivation of trypanothione reductase and glutathione reductase by A1-phthalocyanine tetrasulfonate and hematoporphyrin. Biochem Biophys Res Commun 218:629–632

    Article  PubMed  Google Scholar 

  20. Göl C, Malkoç M, Yeşilot S, Durmuş M (2014) Novel zinc(II) phthalocyanine conjugates bearing different numbers of BODIPY and iodine groups as substituents on the periphery. Dyes Pigments 111:81–90

    Article  CAS  Google Scholar 

  21. Ogunsipe A, Nyokong T (2005) Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J Photochem Photobiol A Chem 173:211–220

    Article  CAS  Google Scholar 

  22. Maya EM, Haisch P, Vázquez P, Torres T (1998) Synthesis and characterization of tetraethynylphthalocyanines. Tetrahedron 54:4397–4404

    Article  CAS  Google Scholar 

  23. Can OS, Kuş A, Kaya EN, Durmuş M, Bulut M (2017) Synthesis and characterization of 6,8-di-tert-butyl-3-[p-(propynyl)phenoxy]coumarin substituted phthalocyanines and investigation of their photophysical and photochemical properties. Inorganica Chim Acta 465:31–37

    Article  CAS  Google Scholar 

  24. Köksoy B, Orman EB, Kuruca H, Bulut M, Durmuş M, Özkaya AR (2016) Mono and double-decker lutetium phthalocyanines bearing iodine groups: electrochemical and electrochromic properties. J Electrochem Soc 163:H927–H936

    Article  CAS  Google Scholar 

  25. Zill AT, Licha K, Haag R, Zimmerman SC (2012) Synthesis and properties of fluorescent dyes conjugated to hyperbranched polyglycerols. New J Chem 36:419–427

    Article  CAS  Google Scholar 

  26. Alison F, Audrey L, Noël P, Lionel S, Jaime R, Jacques R, Didier A (2011) Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells. ChemMedChem 6:2003–2008

    Article  CAS  Google Scholar 

  27. Chipman DM, Grisaro V, Sharon N (1967) The binding of oligosaccharides containing N-acetylglucosamine and N-acetylmuramic acid to lysozyme: the specificity of binding subsites. J Biol Chem 242:4388–4394

    PubMed  CAS  Google Scholar 

  28. Nunes SMT, Sguilla FS, Tedesco AC (2004) Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Brazil J Med Biol Res 37:273–284

    Article  CAS  Google Scholar 

  29. Lehrer SS, Fasman GD (1967) Fluorescence of lysozyme and lysozyme substrate complexes: separation of tryptophan contributions by fluorescence difference methods. J Biol Chem 242:4644–4651

    PubMed  CAS  Google Scholar 

  30. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  PubMed  CAS  Google Scholar 

  31. Jiang C-Q, Gao M-X, He J-X (2002) Study of the interaction between terazosin and serum albumin: synchronous fluorescence determination of terazosin. Anal Chim Acta 452:185–189

    Article  CAS  Google Scholar 

  32. Guo M, Zou J-W, Yi P-G, Shang Z-C, Hu G-X, Yu Q-S (2004) Binding interaction of gatifloxacin with bovine serum albumin. Anal Sci 20:465–470

    Article  PubMed  CAS  Google Scholar 

  33. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  PubMed  CAS  Google Scholar 

  34. Sohrabi N (2015) Binding and UV/Vis spectral investigation of interaction of Ni(II) piroxicam complex with calf thymus deoxyribonucleic acid (Ct-DNA): a thermodynamic approach. J Pharm Sci Res 7:533–537

    CAS  Google Scholar 

  35. Safaei E, Ranjbar B, Hasani L (2007) A study on the self assembly of Fe(II) and dual binding of Ni(II) porphyrazines on CT-DNA. J Porphyr Phthalocyanines 11:805–814

    Article  CAS  Google Scholar 

  36. Thompson M, Woodbury NW (2000) Fluorescent and photochemical properties of a single zinc finger conjugated to a fluorescent DNA-binding probe. Biochemistry 39:4327–4338

    Article  PubMed  CAS  Google Scholar 

  37. Dezhampanah H, Darvishzad T, Aghazadeh M (2011) Thermodynamic and spectroscopic study on the binding of interaction anionic phthalocyanine with calf thymus DNA. Spectrosc An Int J 26:357–365

    Article  CAS  Google Scholar 

  38. Bilgin A, Mendi A, Yıldız U (2006) Novel phthalocyanine polymers with very flexible pentathiatetraethylene units. Polymer 47:8462–8473

    Article  CAS  Google Scholar 

  39. Günsel A, Güzel E, Bilgiçli AT, Yaşa Atmaca G, Erdoğmuş A, Yarasir MN (2017) Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy. J Lumin 192:888–892

    Article  CAS  Google Scholar 

  40. Clarkson GJ, Cook A, McKeown NB, Treacher KE, Zet Ali-Adib (1996) Synthesis and characterization of mesogenic phthalocyanines containing a single poly(oxyethylene) side chain: an example of steric disturbance of the hexagonal columnar mesophase. Macromolecules 29:913–917

    Article  CAS  Google Scholar 

  41. Barman BN, Champion DH, Sjoberg SL (2009) Identification and quantification of polyethylene glycol types in polyethylene glycol methyl ether and polyethylene glycol vinyl ether. J Chromatogr A 1216:6816–6823

    Article  PubMed  CAS  Google Scholar 

  42. Huang L, Gough PC, DeFelippis MR (2009) Characterization of poly(ethylene glycol) and PEGylated products by LC/MS with postcolumn addition of amines. Anal Chem 81:567–577

    Article  PubMed  CAS  Google Scholar 

  43. Dust JM, Fang ZH, Harris JM (1990) Proton NMR characterization of poly(ethylene glycols) and derivatives. Macromolecules 23:3742–3746

    Article  CAS  Google Scholar 

  44. Ogunsipe A, Chen J-Y, Nyokong T (2004) Photophysical and photochemical studies of zinc(ii) phthalocyanine derivatives-effects of substituents and solvents. New J Chem 28:822–827

    Article  CAS  Google Scholar 

  45. Gürol I, Durmuş M, Ahsen V, Nyokong T (2007) Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalt Trans 34:3782–3791

    Article  CAS  Google Scholar 

  46. Kuznetsova NA, Gretsova NS, Kalmykova EA, Makarova EA, Dashkevich SN, Negrimovskii VM, Kaliya OL, Luk’yanets EA (2000) Relationship between the photochemical properties and structure of pophyrins and related compounds. Russ J Gen Chem 70:133–140

    CAS  Google Scholar 

  47. Idowu M, Nyokong T (2009) Interaction of water-soluble CdTe quantum dots with octacarboxy metallophthalocyanines: a photophysical and photochemical study. J Lumin 129:356–362

    Article  CAS  Google Scholar 

  48. Nyokong T, Antunes E (2010) Photochemical and photophysical properties of metallophthalocyanines. Handbook of Porphyrin Science. World Scientific Publishing Company, Singapore, pp 247–357

    Google Scholar 

  49. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  50. Çolak S, Durmuş M, Yildiz SZ (2016) Tetrakis{2-[N-((3-morpholino)propyl)carbamate]oxyethyl} zinc(II) phthalocyanine and its water soluble derivatives: synthesis, photophysical, photochemical and protein binding properties. J Photochem Photobiol A Chem 325:125–134

    Article  CAS  Google Scholar 

  51. Duan W, Wang Z, Cook MJ (2009) Synthesis of tetra(trimethylammonio)phthalocyanato zinc tetraiodide, [ZnPc(NMe3)4]I4, and a spectrometric investigation of its interaction with calf thymus DNA. J Porphyr Phthalocyanines 13:1255–1261

    Article  CAS  Google Scholar 

  52. Palchaudhuri R, Hergenrother PJ (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 18:497–503

    Article  PubMed  CAS  Google Scholar 

  53. Petrosyants SP, Ilyukhin AB (2011) Indium(III) coordination compounds. Russ J Inorg Chem 56:2047–2069

    Article  CAS  Google Scholar 

  54. Suryanarayanan S (2007) Study of interaction between indium species and DNA in the formation of DNA-templated nanowires. Louisiana Tech University, Ruston

    Google Scholar 

  55. Tuncer S, Özçeşmeci İ, Sesalan BŞ, Kalkan Burat A (2018) Spectroscopic and thermodynamic approach to the interaction of nonperipherally substituted cationic phthalocyanines with calf thymus (CT) -DNA. Turk J Chem 42(2):274–290

    Article  CAS  Google Scholar 

  56. Bağda E, Bağda E, Durmuş M (2017) G-quadruplex and calf thymus DNA interaction of quaternized tetra and octa pyridyloxy substituted indium (III) phthalocyanines. J Photochem Photobiol B Biol 175:9–19

    Article  CAS  Google Scholar 

  57. Bağda E, Yabaş E, Bağda E (2017) Analytical approaches for clarification of DNA-double decker phthalocyanine binding mechanism: as an alternative anticancer chemotherapeutic. Spectrochim Acta A Mol Biomol Spectrosc 172:199–204

    Article  PubMed  CAS  Google Scholar 

  58. Thurston DE (2006) Thioredoxin reductase inhibitors. Chemistry and pharmacology of anticancer drugs, 1st edn. CRC Press, Boca Raton, p 223

    Chapter  Google Scholar 

  59. Ackova DG, Smilkov K, Janevik-Ivanovska E, Stafilov T, Arsova-Sarafinovska Z, Makreski P (2015) Evaluation of non-radioactive lutetium- and yttrium-labeled immunoconjugates of rituximab—a vibrational spectroscopy study. Maced J Chem Chem Eng 34:351–362

    Article  CAS  Google Scholar 

  60. Cosa G, Focsaneanu K-S, McLean JRN, McNamee JP, Scaiano JC (2001) Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 73:585–599

    Article  PubMed  CAS  Google Scholar 

  61. Maiti S, Kankia B, Khutsishvili I, Marky LA (2011) Melting behavior and ligand binding of DNA intramolecular secondary structures. Biophys Chem 159:162–171

    Article  PubMed  CAS  Google Scholar 

  62. Yoshikawa K, Matsuzawa Y (1995) Discrete phase transition of giant DNA dynamics of globule formation from a single molecular chain. Phys D Nonlinear Phenom 84:220–227

    Article  CAS  Google Scholar 

  63. Wartell RM, Benight AS (1985) Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys Rep 126:67–107

    Article  CAS  Google Scholar 

  64. http://www.academic.brooklyn.cuny.edu/biology/bio4fv/page/hydropho.htm. Accessed 30 Mar 2018

  65. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  66. Breslauer KJ, Remeta DP, Chou WY, Ferrante R, Curry J, Zaunczkowski D, Snyder JG, Marky LA (1987) Enthalpy-entropy compensations in drug-DNA binding studies. Proc Natl Acad Sci 84:8922–8926

    Article  PubMed  CAS  Google Scholar 

  67. Mussardo P, Corda E, González-Ruiz V, Rajesh J, Girotti S, Martin MA, Olives AI (2011) Study of non-covalent interactions of luotonin A derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes. Anal Bioanal Chem 400:321–327

    Article  PubMed  CAS  Google Scholar 

  68. Uslan C, Sesalan BŞ (2012) Synthesis of novel DNA-interacting phthalocyanines. Dye Pigment 94:127–135

    Article  CAS  Google Scholar 

  69. Jayaramudu T, Raghavendra GM, Varaprasad K, Reddy GVS, Reddy AB, Sudhakar K, Sadiku ER (2016) Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci 133:43027

    Article  CAS  Google Scholar 

  70. Ramstedt M, Leone L, Persson P, Shchukarev A (2014) Cell wall composition of Bacillus subtilis changes as a function of pH and Zn2+ exposure: insights from Cryo-XPS measurements. Langmuir 30:4367–4374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tajbakhsh S, Mohammadi K, Deilami I, Zandi K (2008) Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr J Biotech 7:3832–3835

    CAS  Google Scholar 

  72. Ibrahim Sallam K (2007) Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18:566–575

    Article  CAS  Google Scholar 

  73. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi. Bioeng Bugs 1:395–403

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Istanbul Technical University (BAP No: 39424, and 39556). We are thankful to Dr. Onur Alptürk for his technical support and Prof. Dr. Ayten Karataş for providing the bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sebnem Sesalan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uslan, C., Köksoy, B., Durmuş, M. et al. The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. J Biol Inorg Chem 24, 191–210 (2019). https://doi.org/10.1007/s00775-019-01638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01638-5

Keywords

Navigation