Skip to main content
Log in

Multiple siderophores: bug or feature?

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It is common for bacteria to produce chemically diverse sets of small Fe-binding molecules called siderophores. Studies of siderophore bioinorganic chemistry have firmly established the role of these molecules in Fe uptake and provided great insight into Fe complexation. However, we still do not fully understand why microbes make so many siderophores. In many cases, the release of small structural variants or siderophore fragments has been ignored, or considered as an inefficiency of siderophore biosynthesis. Yet, in natural settings, microbes live in complex consortia and it has become increasingly clear that the secondary metabolite repertoires of microbes reflect this dynamic environment. Multiple siderophore production may, therefore, provide a window into microbial life in the wild. This minireview focuses on three biochemical routes by which multiple siderophores can be released by the same organism—multiple biosynthetic gene clusters, fragment release, and precursor-directed biosynthesis—and highlights emergent themes related to each. We also emphasize the plurality of reasons for multiple siderophore production, which include enhanced iron uptake via synergistic siderophore use, microbial warfare and cooperation, and non-classical functions such as the use of siderophores to take up metals other than Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) J Nat Prod 52:1189–1208

    CAS  PubMed  Google Scholar 

  2. Firn RD, Jones CG (2003) Nat Prod Rep 20:382–391

    CAS  Google Scholar 

  3. Fischbach MA, Clardy J (2007) Nat Chem Biol 3:353–355

    CAS  PubMed  Google Scholar 

  4. Challis GL, Hopwood DA (2003) Proc Natl Acad Sci USA 100:14555–14561

    CAS  PubMed  Google Scholar 

  5. Hantke K (1981) Mol Gen Genet 182:288–292

    CAS  PubMed  Google Scholar 

  6. Zimmermann L, Hantke K, Braun V (1984) J Bacteriol 159:271–277

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bagg A, Neilands JB (1987) Biochemistry 26:5471–5477

    CAS  Google Scholar 

  8. Crumbliss AL, Harrington JM (2009) Adv Inorg Chem 61:179–250

    CAS  Google Scholar 

  9. Sandy M, Butler A (2009) Chem Rev 109:4580–4595

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hider RC, Kong X (2010) Nat Prod Rep 27:637–657

    CAS  PubMed  Google Scholar 

  11. Kraemer SM (2004) Aquat Sci 66:3–18

    CAS  Google Scholar 

  12. Crosa JH (1989) Microbiol Rev 53:517–530

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Crosa JH, Walsh CT (2002) Microbiol Mol Biol Rev 66:223–249

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Challis GL (2005) Chem Bio Chem 6:601–611

    CAS  PubMed  Google Scholar 

  15. Fischbach MA, Walsh CT (2006) Chem Rev 106:3468–3496

    CAS  Google Scholar 

  16. Luckey M, Pollack JR, Wayne R, Ames BN, Neilands JB (1972) J Bacteriol 111:731–738

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Granger J, Price NM (1999) Limnol Oceanogr 44:541–555

    CAS  Google Scholar 

  18. Loper JE, Henkels MD (1999) Appl Environ Microbiol 65:5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamanaka K, Oikawa H, Ogawa H-O, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Microbiology 151:2899–2905

    CAS  PubMed  Google Scholar 

  20. D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Chem Biol 17:254–264

    PubMed  PubMed Central  Google Scholar 

  21. Cordero OX, Ventouras L-A, DeLong EF, Polz MF (2012) Proc Natl Acad Sci USA 109:20059–20064

    CAS  PubMed  Google Scholar 

  22. Miethke M, Kraushaar T, Marahiel MA (2013) FEBS Lett 587:206–213

    CAS  PubMed  Google Scholar 

  23. Tanabe T, Funahashi T, Miyamoto K, Tsujibo H, Yamamoto S (2011) Biol Pharm Bull 34:570–574

    CAS  PubMed  Google Scholar 

  24. Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Mol Microbiol 86:628–644

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Galet J, Deveau A, Hôtel L, Frey-Klett P, Leblond P, Aigle B (2015) Appl Environ Microbiol 81:3132–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) Biometals 17:471–481

    CAS  PubMed  Google Scholar 

  27. Fischbach MA, Lin H, Liu DR, Walsh CT (2005) Proc Natl Acad Sci 102:571–576

    CAS  PubMed  Google Scholar 

  28. Fischbach MA, Lin H, Liu DR, Walsh CT (2006) Nat Chem Biol 2:132–138

    CAS  PubMed  Google Scholar 

  29. Böttcher T, Clardy J (2014) Angew Chem Int Ed Engl 53:3510–3513

    PubMed  PubMed Central  Google Scholar 

  30. Ishida S, Arai M, Niikawa H, Kobayashi M (2011) Biol Pharm Bull 34:917–920

    CAS  PubMed  Google Scholar 

  31. Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, Dorrestein PC, Aigle B (2016) FEMS Microbiol Ecol 92:fiw107

    PubMed  PubMed Central  Google Scholar 

  32. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Proc Natl Acad Sci USA 106:17071–17076

    CAS  Google Scholar 

  33. Guan LL, Kanoh K, Kamino K (2001) Appl Environ Microbiol 67:1710–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnstone TC, Nolan EM (2015) Dalton Trans 44:6320–6339

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA (2012) PLoS One 7:e46754

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Charlang GW, Horowitz NH (1971) Proc Natl Acad Sci 68:260–262

    CAS  PubMed  Google Scholar 

  37. Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Mol Cell Biol 1:94–100

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haas H (2014) Natural Product Reports 31:1266–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Haas H (2003) Appl Microbiol Biotechnol 62:316–330

    CAS  PubMed  Google Scholar 

  40. Johnson L (2008) Mycol Res 112:170–183

    CAS  PubMed  Google Scholar 

  41. Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Biometals 22:573–581

    CAS  PubMed  Google Scholar 

  42. Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC (2015) Aquat Geochem 21:159–195

    CAS  Google Scholar 

  43. Springer SD, Butler A (2016) Coord Chem Rev 306:628–635

    CAS  Google Scholar 

  44. Kenney GE, Sadek M, Rosenzweig AC (2016) Metall Integr Biometal Sci 8:931–940

    CAS  Google Scholar 

  45. Balasubramanian R, Kenney GE, Rosenzweig AC (2011) J Biol Chem 286:37313–37319

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bellenger JP, Wichard T, Kraepiel AML (2008) Appl Environ Microbiol 74:1478–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008) Nat Geosci 1:243–246

    CAS  Google Scholar 

  48. Wichard T, Bellenger JP, Loison A, Kraepiel AML (2008) Environ Sci Technol 42:2408–2413

    CAS  PubMed  Google Scholar 

  49. McRose DL, Baars O, Morel FMM, Kraepiel AML (2017) Environ Microbiol 48:11451–13605

    Google Scholar 

  50. Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Proc Natl Acad Sci USA 100:3754–3759

    CAS  PubMed  Google Scholar 

  51. Homann VV, Edwards KJ, Webb EA, Butler A (2009) BioMetals 22:565–571

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gauglitz JM, Iinishi A, Ito Y, Butler A (2014) Biochemistry 53:2624–2631

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ratledge C, Ewing M (1996) Microbiology 142:2207–2212

    CAS  PubMed  Google Scholar 

  54. Gobin J, Horwitz MA (1996) J Exp Med 183:1527–1532

    CAS  PubMed  Google Scholar 

  55. Xu G, Martinez JS, Groves JT, Butler A (2002) J Am Chem Soc 124:13408–13415

    CAS  PubMed  Google Scholar 

  56. Reichard P, Kretzschmar R, Kraemer S (2007) Geochim Cosmochim Acta 71:5635–5650

    CAS  Google Scholar 

  57. Cheah S-F, Kraemer SM, Cervini-Silva J, Sposito G (2003) Chem Geol 198:63–75

    CAS  Google Scholar 

  58. Cox CD, Adams P (1985) Infect Immun 48:130–138

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Albrecht-Gary AM, Blanc S, Rochel N, Ocaktan A, Abdallah M (1994) Inorg Chem 33:6391–6402

    CAS  Google Scholar 

  60. Cox CD, Graham R (1979) J Bacteriol 137:357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary A-M (2012) Dalton Trans 41:2820–2834

    CAS  PubMed  Google Scholar 

  62. Meyer JM, Van VT, Stintzi A, Berge O, Winkelmann G (1995) Biometals 8:309–317

    CAS  PubMed  Google Scholar 

  63. Meyer JM, Hohnadel D, Hallé F (1989) J Gen Microbiol 135:1479–1487

    CAS  PubMed  Google Scholar 

  64. Boukhalfa H, Crumbliss AL (2002) Biometals 15:325–339

    CAS  PubMed  Google Scholar 

  65. Nurchi VM, Pivetta T, Lachowicz JI, Crisponi G (2009) J Inorg Biochem 103:227–236

    CAS  PubMed  Google Scholar 

  66. Sokol PA, Lewis CJ, Dennis JJ (1992) J Med Microbiol 36:184–189

    CAS  PubMed  Google Scholar 

  67. Bulen WA, LeComte JR (1962) Biochem Biophys Res Commun 9:523–528

    CAS  PubMed  Google Scholar 

  68. Page WJ, Collinson SK, Demange P, Dell A, Abdallah MA (1991) Biol Metals 4:217–222

    CAS  Google Scholar 

  69. Baars O, Zhang X, Gibson MI, Stone AT, Morel FMM, Seyedsayamdost MR (2017) Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201709720

    Article  PubMed  Google Scholar 

  70. Baars O, Zhang X, Morel FMM, Seyedsayamdost MR (2015) Appl Environ Microbiol 82:27–39

    PubMed  PubMed Central  Google Scholar 

  71. Cornish AS, Page WJ (1998) Microbiology 144:1747–1754

    CAS  Google Scholar 

  72. Corbin JL, Bulen WA (1969) Biochemistry 8:757–762

    CAS  PubMed  Google Scholar 

  73. Cornish AS, Page WJ (1995) Biometals 8:332–338

    CAS  Google Scholar 

  74. Hider RC, Liu ZD (2004) In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Taylor and Francis, Boca Raton, pp 1278–1290

    Google Scholar 

  75. Khodr H, Hider R, Duhme-Klair AK (2002) J Biol Inorg Chem 7:891–896

    CAS  PubMed  Google Scholar 

  76. Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) J Bacteriol 188:7242–7256

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin LW, Reid DW, Sharples KJ, Lamont IL (2011) Biometals 24:1059–1067

    CAS  PubMed  Google Scholar 

  78. Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M, Brčeski I, Beškoski V, Lončarević B, Gopčević K, Karadžić I (2018) RSC Advances 8:10549–10560

    Google Scholar 

  79. Dumas Z, Ross-Gillespie A, Kümmerli R (2013) Proc R Soc Lond B Biol Sci 280:20131055

    Google Scholar 

  80. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Proc Natl Acad Sci 99:7072–7077

    CAS  PubMed  Google Scholar 

  81. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) Mol Microbiol 61:1308–1321

    CAS  PubMed  Google Scholar 

  82. McRose D, Baars O, Seyedsayamdost MR, Morel FMM (2018) Proc Natl Acad Sci 115:7581–7586

    CAS  PubMed  Google Scholar 

  83. Persmark M, Neilands JB (1992) Biometals 5:29–36

    CAS  PubMed  Google Scholar 

  84. Sandy M, Butler A (2011) J Nat Prod 74:1207–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sandy M, Han A, Blunt J, Munro M, Haygood M, Butler A (2010) J Nat Prod 73:1038–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CAG, Distel DL, Butler A, Haygood MG (2013) PLoS One 8:e76151

    CAS  PubMed  PubMed Central  Google Scholar 

  87. O’Brien IG, Gibson F (1970) Biochimica Et Biophysica Acta 215:393–402

    PubMed  Google Scholar 

  88. Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN (1979) J Am Chem Soc 101:6097–6104

    CAS  Google Scholar 

  89. Bryce GF, Brot N (1972) Biochemistry 11:1708–1715

    CAS  PubMed  Google Scholar 

  90. Langman L, Young IG, Frost GE, Rosenberg H, Gibson F (1972) J Bacteriol 112:1142–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Greenwood KT, Luke RK (1978) Biochem Biophys Acta 525:209–218

    CAS  PubMed  Google Scholar 

  92. Brickman TJ, McIntosh MA (1992) J Biol Chem 267:12350–12355

    CAS  PubMed  Google Scholar 

  93. Lin H, Fischbach MA, Walsh CT (2005) J Am Chem Soc 127:11075–11084

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Reitz ZL, Sandy M, Butler A (2017) Metallomics 9:824–839

    CAS  PubMed  Google Scholar 

  95. Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A (2014) J Am Chem Soc 136:5615–5618

    CAS  PubMed  Google Scholar 

  96. Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD (2014) Nat Prod Rep 31:61–108

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ratledge C, Winder FG (1962) Biochem J 84:501–506

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ratledge C, Hall MJ (1971) J Bacteriol 108:314–319

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Science 349:8764–8864

    Google Scholar 

  100. Bellenger JP, Wichard T, Xu Y, Kraepiel AML (2011) Environ Microbiol 13:1395–1411

    CAS  PubMed  Google Scholar 

  101. Hancock RE, Hantke K, Braun V (1977) Arch Microbiol 114:231–239

    CAS  PubMed  Google Scholar 

  102. Hantke K (1990) FEMS Microbiol Lett 67:5–8

    CAS  Google Scholar 

  103. Thiericke R, Rohr J (1993) Nat Prod Rep 10:265–289

    CAS  PubMed  Google Scholar 

  104. Francis J, Macturk HM, Madinaveitia J, Snow GA (1953) Biochem J 55:596–607

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 287:1245–1247

    CAS  PubMed  Google Scholar 

  106. Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) J Biol Inorg Chem 11:633–641

    CAS  PubMed  Google Scholar 

  107. Ito Y, Butler A (2005) Limnol Oceanogr 50:1918–1923

    CAS  Google Scholar 

  108. Neidleman S (1987) Biotechnol Genet Eng Rev 5:245–268

    CAS  PubMed  Google Scholar 

  109. Konetschny-Rapp S, Jung G, Raymond K, Meiwes J, Zähner H (1992) J Am Chem Soc 114:2224–2230

    CAS  Google Scholar 

  110. Schafft M, Diekmann H (1978) Arch Microbiol 117:203–207

    CAS  PubMed  Google Scholar 

  111. Rütschlin S, Gunesch S, Böttcher T (2017) Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2017.03.017

    Article  PubMed  Google Scholar 

  112. Soe CZ, Telfer TJ, Levina A, Lay PA, Codd R (2016) J Inorg Biochem 162:207–215

    CAS  PubMed  Google Scholar 

  113. Rütschlin S, Gunesch S, Böttcher T (2018) ACS Chem Biol 13:1153–1158

    PubMed  Google Scholar 

  114. Sattely ES, Walsh CT (2008) J Am Chem Soc 130:12282–12284

    CAS  PubMed  Google Scholar 

  115. Wuest WM, Sattely ES, Walsh CT (2009) J Am Chem Soc 131:5056–5057

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sanders-Loehr J (1986) J Bacteriol 167:57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shapiro JA, Wencewicz TA (2015) ACS Infect Dis 2:157–168

    PubMed  Google Scholar 

  118. Shah P, Swiatlo E (2008) Mol Microbiol 68:4–16

    CAS  PubMed  Google Scholar 

  119. Francis J, Madinaveitia J, Macturk HM, Snow GA (1949) Nature 163:365–366

    CAS  PubMed  Google Scholar 

  120. Neilands JB (1952) J Am Chem Soc 74:4846–4847

    CAS  Google Scholar 

  121. Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings B, WIlliams JH (1952) J Am Chem Soc 74:1362–1363

    CAS  Google Scholar 

  122. Lilley BN, Bassler BL (2000) Mol Microbiol 36:940–954

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Princeton Environmental Institute as well as the National Science Foundation (OCE 1657639 granted to F.M.M.) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darcy L. McRose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McRose, D.L., Seyedsayamdost, M.R. & Morel, F.M.M. Multiple siderophores: bug or feature?. J Biol Inorg Chem 23, 983–993 (2018). https://doi.org/10.1007/s00775-018-1617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1617-x

Keywords

Navigation