Skip to main content
Log in

Platinum(II) complexes of imidazophenanthroline-based polypyridine ligands as potential anticancer agents: synthesis, characterization, in vitro cytotoxicity studies and a comparative ab initio, and DFT studies with cisplatin, carboplatin, and oxaliplatin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of the platinum(II) complexes, [Pt(AIP)(bpy)](PF6)2 (1) and [Pt(PIP)(phen)](PF6)2 (2), of anthracene- and pyrene-conjugated imidazophenanthroline ligands and their in vitro cytotoxicity toward the fibroblast cells and the HeLa cell lines are reported. MTT assay demonstrates their cytotoxicity against the HeLa cell lines with the IC50 values of 1.35 and 1.56 µM, respectively, and the cytotoxicity profiles indicate that the HeLa cell lines show more activity than the fibroblast cells. Trypan blue assay highlights significant damage on the HeLa cell lines with a pronounced reduction on their clonogenicity. AO/EB staining shows marked morphologic signs of apoptosis in a dose-dependent manner and the LDH and DNA laddering assays also lend support to the cytotoxicity of the complexes. The molecular docking study reveals that the complexes interact with DNA through hydrogen bonding. The TD-DFT energy-optimized structures of the complexes show that the platinum(II) center has a slightly distorted square-planar geometry. The TD-DFT modelled LUMOs receive major contributions from the platinum d-orbitals, while the HOMOs are delocalized largely on the anthracenyl- and pyrenyl ligands, resulting in the LMCT transition at 352 nm. The structural, bonding, electronic, and optical properties of the complexes 1 and 2 reported in the present work and that of [Pt(AIP)(phen)](PF6)2 (3) and [Pt(PIP)(bpy)](PF6)2 (4), reported by us recently, and the approved drugs cisplatin, carboplatin, and oxaliplatin are described in the light of the optimized geometries, ΔEHOMO–LUMO, polarizability (α), hyperpolarizability (β), Mulliken negativities, and dipole moments computed from the ab initio and DFT computational studies.

Graphical abstract

The synthesis of Pt(II) complexes of anthracene- and pyrene-appended imidazophenanthroline ligands and their in vitro cytotoxicity against fibroblast cells and HeLa cell lines are reported. The DFT computational study of the complexes and cisplatin, carboplatin, and oxaliplatin are described in search of the ligand design features for the development of new Pt-drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chu E, DeVita VT Jr (2008) Physician’s cancer chemotherapy drug manual. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  2. Cvitkovic E (1998) Cancer Treat Rev 24:265–281

    Article  PubMed  CAS  Google Scholar 

  3. Screnci D, McKeage MJ (1999) Inorg Biochem 77:105–110

    Article  CAS  Google Scholar 

  4. Harrap KR (1985) Cancer Treat Rev 12:21–33

    Article  PubMed  CAS  Google Scholar 

  5. Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Biochem Pharmacol 52:1855–1865

    Article  PubMed  CAS  Google Scholar 

  6. Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E (2002) Mol Cancer Ther 1:227–235

    PubMed  CAS  Google Scholar 

  7. Holzer AK, Manorek GH, Howell SB (2006) Mol Pharmacol 70:1390–1394

    Article  PubMed  CAS  Google Scholar 

  8. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehme A, Christen RD, Howell SB (1996) Cancer Res 56:4881–4886

    PubMed  CAS  Google Scholar 

  9. Spingler B, Whittington DA, Lippard SJ (2001) Inorg Chem 40:5596–5602

    Article  PubMed  CAS  Google Scholar 

  10. Lebwohl D, Canetta R (1998) Eur J Cancer 34:1522–1534

    Article  PubMed  CAS  Google Scholar 

  11. Shimada M, Itamochi H, Kigawa J (2013) Cancer Manag Res 5:67–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127

    Article  PubMed  CAS  Google Scholar 

  13. Welink J, Boven E, Vermorken JB, Gall HE, van der Vijgh WJF (1999) Clin Cancer Res 5:2349–2358

    PubMed  CAS  Google Scholar 

  14. Kelland LR, Abel G, McKeage MJ, Jones M, Goddard PM, Valenti M, Murrer BA, Harrap K (1993) Cancer Res 53:2581–2586

    PubMed  CAS  Google Scholar 

  15. Choy H (2006) Expert Rev Anticancer Ther 6:973–982

    Article  PubMed  CAS  Google Scholar 

  16. Sharp SY, Rogers PM, Kelland LR (1995) Clin Cancer Res 1:981–989

    PubMed  CAS  Google Scholar 

  17. Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR (1998) Br J Cancer 77:366–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sharp SY, O’Neill CF, Rogers PM, Boxall FE, Kelland LR (2002) Eur J Cancer 38:2309–2315

    Article  PubMed  CAS  Google Scholar 

  19. Alderden RA, Hall MD, Hambley TW (2006) J Chem Educ 83:728–734

    Article  CAS  Google Scholar 

  20. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Oncogene 31:1869–1883

    Article  PubMed  CAS  Google Scholar 

  21. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G (2014) Cell Death Dis 5(e1257):1–18

    Google Scholar 

  22. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  PubMed  CAS  Google Scholar 

  23. Wilson JJ, Lippard SJ (2014) Chem Rev 114:4470–4495

    Article  PubMed  CAS  Google Scholar 

  24. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  25. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  26. Fuertes MA, Alonso C, Pérez JM (2003) Chem Rev 103:645–662

    Article  PubMed  CAS  Google Scholar 

  27. Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407

    Article  PubMed  CAS  Google Scholar 

  28. Arnesano F, Natile G (2009) Coord Chem Rev 253:2070–2081

    Article  CAS  Google Scholar 

  29. Gibson D (2009) Dalton Trans 10681–10689

  30. Kelland L (2007) Nat Rev Cancer 7:573–584

    Article  PubMed  CAS  Google Scholar 

  31. Johnstone TC, Suntharalingam K, Lippard SJ (2016) Chem Rev 116:3436–3486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6871

    Article  CAS  Google Scholar 

  33. Kartalou M, Essigmann JM (2001) Mutat Res Fundam Mol Mech Mutagen 478:1–21

    Article  CAS  Google Scholar 

  34. Barnham KJ, Berners-Price SJ, Frenkiel TJ, Frey U, Sadler PJ (1995) Angew Chem Int Ed Engl 34:1874–1877

    Article  CAS  Google Scholar 

  35. Siddik ZH (2003) Oncogene 22:7265–7279

    Article  PubMed  CAS  Google Scholar 

  36. Eastman A (1990) Cancer Cells 2:275–280

    PubMed  CAS  Google Scholar 

  37. Todd RC, Lippard SJ (2009) Metallomics 1:280–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mistry P, Kelland LR, Abel G, Sidhar S, Harrap KR (1991) Br J Cancer 64:215–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lovejoy KS, Lippard SJ (2009) Dalton Trans 10651–10659

  40. Farrell N (1996) Met Ions Biol Syst 32:603–639

    PubMed  CAS  Google Scholar 

  41. Ma Z, Choudhury JR, Wright MW, Day CS, Saluta G, Kucera GL, Bierbach U (2008) J Med Chem 51:7574–7580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hall MD, Hambley TW (2002) Coord Chem Rev 232:49–67

    Article  CAS  Google Scholar 

  43. Mukhopadhyay S, Barnés CM, Haskel A, Short SM, Barnes KR, Lippard SJ (2008) Bioconjug Chem 19:39–49

    Article  PubMed  CAS  Google Scholar 

  44. Johnstone TC, Alexander SM, Wilson JJ, Lippard SJ (2015) Dalton Trans 44:119–129

    Article  PubMed  CAS  Google Scholar 

  45. Hall MD, Mellor HR, Callaghan R, Hambley TW (2007) J Med Chem 50:3403–3411

    Article  PubMed  CAS  Google Scholar 

  46. Pages B, Garbutcheon-Singh K, Aldrich-Wright J (2017) Eur J Inorg Chem 2017:1613–1624

    Article  CAS  Google Scholar 

  47. Pages B, Sakoff J, Gilbert J, Rodger A, Chmel N, Jones N, Kelly S, Ang D, Aldrich-Wright JR (2016) Chem Eur J 22:8943–8954

    Article  PubMed  CAS  Google Scholar 

  48. Cerón-Carrasco JP, Jacquemin D (2015) Theor Chem Acc 134:146–153

    Article  CAS  Google Scholar 

  49. Cerón-Carrasco JP, Cerezo J, Requena A, Zúñiga J, Contreras-García J, Chavan S, Manrubia-Cobo M, Pérez-Sánchez HE (2014) J Mol Model 20:2401–2409

    Article  PubMed  CAS  Google Scholar 

  50. Cerón-Carrasco JP, Jacquemin D, Cauët E (2012) Phys Chem Chem Phys 14:12457–12464

    Article  PubMed  CAS  Google Scholar 

  51. Carloni P, Andreoni W, Hutter J, Curioni A, Giannozzi P, Parinello M (1995) Chem Phys Lett 234:50–56

    Article  CAS  Google Scholar 

  52. Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378–9387

    Article  PubMed  CAS  Google Scholar 

  53. Lau JKC, Deubel DV (2006) J Chem Theory Comput 2:103–106

    Article  PubMed  CAS  Google Scholar 

  54. Raber J, Zhu C, Eriksson LA (2004) Mol Phys 102:2537–2544

    Article  CAS  Google Scholar 

  55. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 26:907–914

    Article  PubMed  CAS  Google Scholar 

  56. Baik M-H, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  PubMed  CAS  Google Scholar 

  57. Burda JV, Leszczynski J (2003) Inorg Chem 42:7162–7172

    Article  PubMed  CAS  Google Scholar 

  58. Robertazzi A, Platts JA (2005) Inorg Chem 44:267–274

    Article  PubMed  CAS  Google Scholar 

  59. Mantri Y, Lippard SJ, Baik M-H (2007) J Am Chem Soc 129:5023–5030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Alexander C, Nithyakumar A, Samy NA (2017) Inorg Chem Commun 78:17–20

    Article  CAS  Google Scholar 

  61. Yamada M, Tanaka Y, Yoshimoto Y, Kuroda S, Shimao I (1992) Bull Chem Soc Jpn 65:1006–1011

    Article  CAS  Google Scholar 

  62. Singh V, Mondal PC, Kumar A, Jeyachandran YL, Awasthi SK, Gupta RD, Zharnikov M (2014) Chem Commun 50:11484–11487

    Article  CAS  Google Scholar 

  63. Palocsay FA, Rund JV (1969) Inorg Chem 8:524–528

    Article  CAS  Google Scholar 

  64. van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Cree IA (ed) Cancer cell culture: methods and protocols, vol 731, 2nd edn. Methods in molecular biology, Chapter 20. Springer Science, Berlin, pp 237–246

    Chapter  Google Scholar 

  65. Strober W (2015) Curr Protoc Immunol 111:A3.B.1–A3.B.3

    Article  Google Scholar 

  66. Strober W (1997) Curr Protoc Immunol Appendix 21:A.3B.1–A.3B.2

  67. McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR (1995) The end of the (cell) line: methods for the study of apoptosis in vitro, Chapter 9. In: Schwartz LM, Osborne BA (eds) Methods in cell biology, vol 46. Academic Press, New York, pp 153–185

    Google Scholar 

  68. Gaussian 16, Revision A.03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford, CT

  69. Becke AD (1988) Phys Rev A At Mol Opt Phys 38:3098–3100

    Article  CAS  Google Scholar 

  70. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789

    Article  PubMed  CAS  Google Scholar 

  71. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–284

    Article  CAS  Google Scholar 

  72. Martin JML, Sundermann A (2001) J Chem Phys 114:3408–3420

    Article  CAS  Google Scholar 

  73. Adamoab C, Jacquemin D (2013) Chem Soc Rev 42:845–856

    Article  Google Scholar 

  74. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  75. Wolterbeek HTh, van deer Meer JGM (2005) Assay Drug Dev Technol 3:675–682

    Article  PubMed  CAS  Google Scholar 

  76. Haslam G, Wyatt D, Kitos PA (2000) Cytotechnology 32:63–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Michal G, Mollering H, Siedel J (1983) In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 1. Verlag Chemie, Weinheim, p 197

    Google Scholar 

  78. Decker T, Lohmann-Matthes M-L (1988) J Immunol Methods 115:61–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support to Carlson Alexander from Loyola College Research Park is gratefully acknowledged. The service rendered by the Sophisticated Analytical Instrumentation Facilities at IIT-Madras and Punjab and Jawaharlal Nehru Universities for recording ESI-TOF and MALDI-TOF mass spectra and NMR spectra is gratefully acknowledged. We thank Dr. Kavitha Sankaranarayanan, Ion Channel Biology Laboratory, AU-KBC Research Center, Anna University, Chennai, for carrying out the in vitro studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Arockia Samy.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Carlson Alexander is currently pursuing his Masters in Chemistry (M.Sc.) at The National Institute of Technology, Tiruchirappalli 620015, India.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, C., Nithyakumar, A., Paul, M.W.B. et al. Platinum(II) complexes of imidazophenanthroline-based polypyridine ligands as potential anticancer agents: synthesis, characterization, in vitro cytotoxicity studies and a comparative ab initio, and DFT studies with cisplatin, carboplatin, and oxaliplatin. J Biol Inorg Chem 23, 833–848 (2018). https://doi.org/10.1007/s00775-018-1579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1579-z

Keywords

Navigation