Skip to main content

Advertisement

Log in

Labelling Herceptin with a novel oxaliplatin derivative: a computational approach towards the selective drug delivery

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The clinical use of platinum(II)-based drugs has serious side effects due to the non-specific reactions with both malignant and normal cells. To circumvent such major drawback, novel metallodrugs might be combined with suitable carrier molecules, as antibodies, to ensure selective attacks on tumours while sparing healthy tissues. In this contribution, we investigate the stability of a novel oxaliplatin derivate drug embedded in Herceptin (trastuzumab), an antibody which is able to recognise breast cancer cells, by using a wide panel of theoretical tools: docking, molecular dynamics and quantum calculations. Our calculations reveal the binding mechanism: the drug initially interacts non-covalently with the Pro40A and Asp167A residues, and the nitrogen of His171B subsequently replaces one of the water molecules coordinated to the platinum center, where the latter step reversibly fixes the drug into the antibody. These data might be used to further rationalise the synthesis of improved drugs beyond classical platinum(II) derivatives by improving the ligand-protein coupling mode.

A wide panel of theoretical tools is used to determine the chemical interactions stablished between a novel platinum(II)-based drug when linked to the Herceptin antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenberg B, VanCamp L, Krigas T (1965). Nature 205:698–699

    Article  CAS  Google Scholar 

  2. Kelland L (2007) Nat Rev Cancer 7:573–584

    Article  CAS  Google Scholar 

  3. Jamieson E R, Lippard S J (1999) Chem Rev 99:2467–2498

    Article  CAS  Google Scholar 

  4. McWhinney S R, Goldberg R M, McLeod H L (2009) Mol Cancer Ther 8:10–16

    Article  CAS  Google Scholar 

  5. Jung Y, Lippard S J (2007) Chem Rev 107:1387–1407

    Article  CAS  Google Scholar 

  6. Zimmermann T, Chval Z, Burda J V (2009) J Phys Chem B 113:3139–3150

    Article  CAS  Google Scholar 

  7. Takahara P M, Frederick C A, Lippard S J (1996) J Am Chem Soc 118:12309–12321

    Article  CAS  Google Scholar 

  8. Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Pérez J M (2007) Anticancer Ag Med Chemother 7:3–18

    Article  CAS  Google Scholar 

  9. Pérez R P (1998) Eur J Cancer 34:1535–1544

    Article  Google Scholar 

  10. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  CAS  Google Scholar 

  11. Burda J V, Leszczyński J (2003) Inorg Chem 42:7162–7172

    Article  CAS  Google Scholar 

  12. Fuertes M A, Alonso C, Pérez J M (2003) Chem Rev 103:645–662

    Article  CAS  Google Scholar 

  13. Wong E, Giandomenico C M (1999) Chem Rev 99:2351–2466

    Article  Google Scholar 

  14. Lovejoy KS, Lippard SJ (2009) Dalton Trans 10651–10659

  15. Samper K G, Vicente C, Rodriguez V, Atrian S, Cutillas N, Capdevila M, Ruiz J, Palacios O (2012) Dalton Trans 41:300–306

    Article  CAS  Google Scholar 

  16. Sanchez-Cano C, Hannon MJ (2009) Dalton Trans 10702–10711

  17. Ruíz J, Vicente C, de Haro C, Espinosa A (2011) Inorg Chem 50:2151–2158

    Article  Google Scholar 

  18. Zamora A, Rodríguez V, Cutillas N, Yellol G S, Espinosa A, Samper K G, Capdevila M, Palacios O, Ruíz J (2013) J Inorg Biochem 128:48–56

    Article  CAS  Google Scholar 

  19. Trail P, Willner D, Lasch S, Henderson A, Hofstead S, Casazza A, Firestone R, Hellstrom I, Hellstrom K (1993) Science 261:212–215

    Article  CAS  Google Scholar 

  20. Butler JS, Sadler PJ (2013) Curr Opin Chem Biol 17:175–188

    Article  CAS  Google Scholar 

  21. Cho H S, Mason K, Ramyar K X, Stanley A M, Gabelli S B, Denney D W Jr, Leahy D J (2003) Nature 421:756– 760

    Article  CAS  Google Scholar 

  22. Hudis CA (2007) N Engl J Med 357:39–51. PMID: 17611206

    Article  CAS  Google Scholar 

  23. Xu C, Wang B, Sun S (2009) J Am Chem Soc 131:4216–4217

    Article  CAS  Google Scholar 

  24. Gao J, Liu Y G, Liu R, Zingaro R (2008) ChemMedChem 3:954–962

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar D G (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar D G (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar D G (2011) Chem Phys Lett 502:1–13

    Article  CAS  Google Scholar 

  28. Singh U C, Kollman P A (1984) J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  29. Besler B H, Merz K M, Kollman P A (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  30. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  31. Scollard D A, Chan C, Holloway C M, Reilly R M (2011) Nucl Med Biol 38:129–136

    Article  CAS  Google Scholar 

  32. Hermanto S, Haryuni R D, Ramli M, Mutalib A, Hudiyono S (2012) J Pharm 2:12–18

    Google Scholar 

  33. Stroganov O V, Novikov F N, Stroylov V S, Kulkov V, Chilov G G (2008) J Chem Inf Model 48:2371–2385

    Article  CAS  Google Scholar 

  34. Navarro-Fernandez J, Pérez-Sánchez H, Martinez-Martinez I, Meliciani I, Guerrero J A, Vicente V, Corral J, Wenzel W (2012) J Med Chem 55:6403–6412

    Article  CAS  Google Scholar 

  35. Vilar Sb, Cozza Gb, Moro Sb (2008) Curr Top Med Chem 8:1555–1572

    Article  CAS  Google Scholar 

  36. Wang J, Cieplak P, Kollman P A (2000) J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  37. Sánchez-Linares I, Pérez-Sánchez H, Cecilia J, Garcia J (2012) BMC Bioinf 13:S13

    Article  Google Scholar 

  38. Contreras-García J, Johnson E R, Keinan S, Chaudret R, Piquemal J P, Beratan D N, Yang W (2011) J Chem Theory Comput 7:625–632

    Article  Google Scholar 

  39. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J, Yang W (2010) J Am Chem Soc 132:6498– 6506

    Article  CAS  Google Scholar 

  40. Contreras-García J, Yang W, Johnson E R (2011) J Phys Chem A 115:12983–12990

    Article  Google Scholar 

  41. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B, Lindahl E (2013) Bioinf 29:845–854

    Article  CAS  Google Scholar 

  42. Wang J, Wolf R M, Caldwell J W, Kollman P A, Case D A (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  43. Yao S, Plastaras J P, Marzilli L G (1994) Inorg Chem 33:6061–6077

    Article  CAS  Google Scholar 

  44. Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  45. Hess B, Bekker H, Berendsen H J C, Fraaije J G E M (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  46. Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A, Haak J R (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  47. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  48. Hoover W G (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  49. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  50. Lau J K C, Ensing B (2010) Phys Chem Chem Phys 12:10348–10355

    Article  CAS  Google Scholar 

  51. Ruiz J, Rodríguez V, Cutillas N, Espinosa A, Hannon MJ (2011) J Inorg Biochem 105:525–531

    Article  CAS  Google Scholar 

  52. Cutillas N, Yellol G S, de Haro C, Vicente C, Rodríguez V, Ruíz J (2013) Coord Chem Rev 257:2784–2797

    Article  CAS  Google Scholar 

  53. Dupont C, Patel C, Dumont E (2011) J Phys Chem B 115:15138–15144

    Article  CAS  Google Scholar 

  54. Futera Z, Platts J A, Burda J V (2012) J Comput Chem 33:2092–2101

    Article  CAS  Google Scholar 

  55. Loos P F, Dumont E, Laurent A D, Assfeld X (2009) Chem Phys Lett 475:120–123

    Article  CAS  Google Scholar 

  56. Garrec J, Patel C, Rothlisberger U, Dumont E (2012) J Am Chem Soc 134:2111–2119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. P. C.-C. acknowledges the support from the FP7 EU Marie Curie Actions through the Campus Mare Nostrum 37/38 CMN UMU Incoming Mobility Programme ACTion (U-IMPACT). J.C. acknowledges a FPU fellowship provided by the Ministerio de Educación of Spain. This work was partially supported by the Spanish Ministerio de Ciencia e Innovación under Projects CTQ2011-25872 and CONSOLIDER CSD2009-00038, by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Projects 08735/PI/08 and 18946/JLI/13. This work has been funded by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). This work was partially supported by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA −CIEMAT), funded by the European Regional Development Fund (ERDF). CETA −CIEMAT belongs to CIEMAT and the Government of Spain. The authors also thankfully acknowledge the computer resources and the technical support provided by the Plataforma Andaluza de Bioinformática of the University of Málaga. The authors acknowledge that the results of this research have been also achieved through the PRACE-2IP project (FP7 RI-283493) using the resources provided by the IBM PLX-GPU and based in Italy at CINECA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José P. Cerón-Carrasco or Horacio Pérez-Sánchez.

Additional information

This paper belongs to Topical Collection MIB 2013 (Modeling Interactions in Biomolecules VI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerón-Carrasco, J.P., Cerezo, J., Requena, A. et al. Labelling Herceptin with a novel oxaliplatin derivative: a computational approach towards the selective drug delivery. J Mol Model 20, 2401 (2014). https://doi.org/10.1007/s00894-014-2401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2401-7

Keywords

Navigation