Skip to main content
Log in

Selective tuning of activity in a multifunctional enzyme as revealed in the F21W mutant of dehaloperoxidase B from Amphitrite ornata

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Possessing both peroxidase and peroxygenase activities with a broad substrate profile that includes phenols, indoles, and pyrroles, the enzyme dehaloperoxidase (DHP) from Amphitrite ornata is a multifunctional catalytic hemoglobin that challenges many of the assumptions behind the well-established structure–function paradigm in hemoproteins. While previous studies have demonstrated that the F21W variant leads to attenuated peroxidase activity in DHP, here we have studied the impact of this mutation on peroxygenase activity to determine if it is possible to selectively tune DHP to favor one function over another. Biochemical assays with DHP B (F21W) revealed minimal decreases in peroxygenase activity of 1.2–2.1-fold as measured by 4-nitrophenol or 5-Br-indole substrate conversion, whereas the peroxidase activity catalytic efficiency for 2,4,6-trichlorophenol (TCP) was more than sevenfold decreased. Binding studies showed a 20-fold weaker affinity for 5-bromoindole (K d = 2960 ± 940 μM) in DHP B (F21W) compared to WT DHP B. Stopped-flow UV/visible studies and isotope labeling experiments together suggest that the F21W mutation neither significantly changes the nature of the catalytic intermediates, nor alters the mechanisms that have been established for peroxidase and peroxygenase activities in DHP. The X-ray crystal structure (1.96 Å; PDB 5VLX) of DHP B (F21W) revealed that the tryptophan blocks one of the two identified TCP binding sites, specifically TCPinterior, suggesting that the other site, TCPexterior, remains viable for binding peroxygenase substrates. Taken together, these studies demonstrate that blocking the TCPinterior binding site in DHP selectively favors peroxygenase activity at the expense of its peroxidase activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lebioda L, LaCount MW, Zhang E, Chen YP, Han K, Whitton MM, Lincoln DE, Woodin SA (1999) Nature 401:445

    Article  CAS  PubMed  Google Scholar 

  2. Franzen S, Ghiladi RA, Lebioda L, Dawson J (2016) Heme peroxidases. The Royal Society of Chemistry, Cambridge, pp 218–244

    Google Scholar 

  3. Chen YP, Woodin SA, Lincoln DE, Lovell CR (1996) J Biol Chem 271:4609–4612

    Article  CAS  PubMed  Google Scholar 

  4. McCombs NL, D’Antonio J, Barrios DA, Carey LM, Ghiladi RA (2016) Biochemistry 55:2465–2478

    Article  CAS  PubMed  Google Scholar 

  5. Barrios DA, D’Antonio J, McCombs NL, Zhao J, Franzen S, Schmidt AC, Sombers LA, Ghiladi RA (2014) J Am Chem Soc 136:7914–7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCombs NL, Smirnova T, Ghiladi RA (2017) Catal Sci Technol 7:3104–3118

    Article  CAS  PubMed  Google Scholar 

  7. Osborne RL, Taylor LO, Han KP, Ely B, Dawson JH (2004) Biochem Biophys Res Commun 324:1194–1198

    Article  CAS  PubMed  Google Scholar 

  8. Feducia J, Dumarieh R, Gilvey LB, Smirnova T, Franzen S, Ghiladi RA (2009) Biochemistry 48:995–1005

    Article  CAS  PubMed  Google Scholar 

  9. D’Antonio J, D’Antonio EL, Thompson MK, Bowden EF, Franzen S, Smirnova T, Ghiladi RA (2010) Biochemistry 49:6600–6616

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thompson MK, Franzen S, Ghiladi RA, Reeder BJ, Svistunenko DA (2010) J Am Chem Soc 132:17501–17510

    Article  CAS  PubMed  Google Scholar 

  11. D’Antonio EL, D’Antonio J, de Serrano V, Gracz H, Thompson MK, Ghiladi RA, Bowden EF, Franzen S (2011) Biochemistry 50:9664–9680

    Article  PubMed  PubMed Central  Google Scholar 

  12. D’Antonio J, Ghiladi RA (2011) Biochemistry 50:5999–6011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dumarieh R, D’Antonio J, Deliz-Liang A, Smirnova T, Svistunenko DA, Ghiladi RA (2013) J Biol Chem 288:33470–33482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osborne RL, Sumithran S, Coggins MK, Chen YP, Lincoln DE, Dawson JH (2006) J Inorg Biochem 100:1100–1108

    Article  CAS  PubMed  Google Scholar 

  15. Osborne RL, Coggins MK, Raner GM, Walla M, Dawson JH (2009) Biochemistry 48:4231–4238

    Article  CAS  PubMed  Google Scholar 

  16. Davydov R, Osborne RL, Shanmugam M, Du J, Dawson JH, Hoffman BM (2010) J Am Chem Soc 132:14995–15004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du J, Sono M, Dawson JH (2010) Biochemistry 49:6064–6069

    Article  CAS  PubMed  Google Scholar 

  18. de Serrano V, D’Antonio J, Franzen S, Ghiladi RA (2010) Acta Cryst D66:529–538

    Google Scholar 

  19. Poulos TL, Kraut J (1980) J Biol Chem 255:8199–8205

    CAS  PubMed  Google Scholar 

  20. Dunford HB (2016) Heme peroxidases. The Royal Society of Chemistry, Cambridge, pp 99–112

    Google Scholar 

  21. Ortiz de Montellano PR (ed) (2015) Cytochrome p450: structure, mechanism, and biochemistry. Springer International Publishing, Switzerland

    Google Scholar 

  22. Franzen S, Thompson MK, Ghiladi RA (2012) Biochim Biophys Acta 1824:578–588

    Article  CAS  PubMed  Google Scholar 

  23. McCombs NL, Moreno-Chicano T, Carey LM, Franzen S, Hough MA, Ghiladi RA (2017) Biochemistry 56:2294–2303

    Article  CAS  PubMed  Google Scholar 

  24. Wang C, Lovelace LL, Sun S, Dawson JH, Lebioda L (2013) Biochemistry 52:6203–6210

    Article  CAS  PubMed  Google Scholar 

  25. LaCount MW, Zhang E, Chen YP, Han K, Whitton MM, Lincoln DE, Woodin SA, Lebioda L (2000) J Biol Chem 275:18712–18716

    Article  CAS  PubMed  Google Scholar 

  26. Thompson MK, Davis MF, de Serrano V, Nicoletti FP, Howes BD, Smulevich G, Franzen S (2010) Biophys J 99:1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, de Serrano V, Le P, Franzen S (2013) Biochemistry 52:2427–2439

    Article  CAS  PubMed  Google Scholar 

  28. Beers RF Jr, Sizer IW (1952) J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  29. Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) Methods in enzymology. Academic, New York, pp 307–326

    Google Scholar 

  30. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Cryst D66:213–221

    Google Scholar 

  32. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Cryst D66:486–501

    Google Scholar 

  33. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Acta Cryst D68:352–367

    Google Scholar 

  34. Chenprakhon P, Sucharitakul J, Panijpan B, Chaiyen P (2010) J Chem Educ 87:829–831

    Article  CAS  Google Scholar 

  35. Carugo O, Pongor S (2001) Protein Sci 10:1470–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cohen FE, Sternberg MJ (1980) J Mol Biol 138:321–333

    Article  CAS  PubMed  Google Scholar 

  37. Chothia C, Lesk AM (1986) EMBO J 5:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun S, Sono M, Wang C, Du J, Lebioda L, Dawson JH (2014) Arch Biochem Biophys 545:108–115

    Article  CAS  PubMed  Google Scholar 

  39. Jiang S, Wright I, Swartz P, Franzen S (2013) Biochimica et Biophysica Acta (BBA) Proteins and Proteomics 1834:2020–2029

    Article  CAS  Google Scholar 

  40. Zhao J, de Serrano V, Dumarieh R, Thompson M, Ghiladi RA, Franzen S (2012) J Phys Chem B 116:12065–12077

    Article  CAS  PubMed  Google Scholar 

  41. Carey LM, Gavenko R, Svistunenko DA, Ghiladi RA (2017) Biochimica et Biophysica Acta (BBA) Proteins and Proteomics (in press)

  42. de Serrano VS, Davis MF, Gaff JF, Zhang Q, Chen Z, D’Antonio EL, Bowden EF, Rose R, Franzen S (2010) Acta Cryst D66:770–782

    Google Scholar 

  43. Chen Z, de Serrano V, Betts L, Franzen S (2009) Acta Cryst D65:34–40

    Google Scholar 

  44. de Serrano V, Chen Z, Davis MF, Franzen S (2007) Acta Cryst D63:1094–1101

    Google Scholar 

  45. Kwon H, Moody PCE, Raven EL (2016) Heme peroxidases. The Royal Society of Chemistry, Cambridge, pp 47–60

    Google Scholar 

Download references

Acknowledgements

This project was supported by NSF CAREER Award CHE-1150709 and NSF CHE-1609446. Mass spectra were obtained at the Mass Spectrometry Facility for Biotechnology at North Carolina State University. Partial funding for the facility was obtained from the North Carolina Biotechnology Center and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza A. Ghiladi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carey, L.M., Kim, K.B., McCombs, N.L. et al. Selective tuning of activity in a multifunctional enzyme as revealed in the F21W mutant of dehaloperoxidase B from Amphitrite ornata . J Biol Inorg Chem 23, 209–219 (2018). https://doi.org/10.1007/s00775-017-1520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1520-x

Keywords

Navigation