Skip to main content
Log in

Selenite and ebselen supplementation attenuates d-galactose-induced oxidative stress and increases expression of SELR and SEP15 in rat lens

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Selenite and ebselen supplementation has been shown to possess anti-cataract potential in some experimental animal models of cataract, however, the underlying mechanisms remain unclear. The present study was designed to evaluate the anti-cataract effects and the underlying mechanisms of selenite and ebselen supplementation on galactose induced cataract in rats, a common animal model of sugar cataract. Transmission electron microscopy images of lens fiber cells (LFC) and lens epithelial cells (LEC) were observed in d-galactose-induced experimental cataractous rats treated with or without selenite and ebselen, also redox homeostasis and expression of proteins such as selenoprotein R (SELR), 15kD selenoprotein (SEP15), superoxide dismutase 1 (SOD1), catalase (CAT), β-crystallin protein, aldose reductase (AR) and glucose-regulated protein 78 (GRP78) were estimated in the lenses. The results showed that d-galactose injection injured rat lens and resulted in cataract formation; however, selenite and ebselen supplementation markedly alleviated ultrastructural injury of LFC and LEC. Moreover, selenite and ebselen supplementation could mitigate the oxidative damage in rat lens and increase the protein expressions of SELR, SEP15, SOD1, CAT and β-crystallin, as well as decrease the protein expressions of AR and GRP78. Taken together, these findings for the first time reveal the anti-cataract potential of selenite and ebselen in galactosemic cataract, and provide important new insights into the anti-cataract mechanisms of selenite and ebselen in sugar cataract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AR:

Aldose reductase

CAT:

Catalase

DMSO:

Dimethyl sulfoxide

ECL:

Enhanced chemiluminescence

ER:

Endoplasmic reticulum

GPX:

Glutathione peroxidase

GRP:

Glucose-regulated protein

LEC:

Lens epithelial cell

LFC:

Lens fiber cell

MDA:

Malondialdehyde

MetO:

Methionine sulfoxide

MSR:

Methionine sulfoxide reductase

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide

OLB:

Osmiophilic lamellar bodies

PBS:

Phosphate-buffered saline

PC:

Protein carbonyl

ROS:

Reactive oxygen species

SELR:

Selenoprotein R

SEP15:

15kD selenoprotein

SOD1:

Superoxide dismutase 1

TBS-T:

Tris-buffered saline with Tween

TEM:

Transmission electron microscopy

TSH:

Total mercapto group

References

  1. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  2. Rayman MP (2012) Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  3. Flohé L (2005) Dev Ophthalmol 38:89–102

    PubMed  Google Scholar 

  4. Zhu X, Lu Y (2012) Curr Eye Res 37:163–169

    Article  CAS  PubMed  Google Scholar 

  5. Lapchak PA, Zivin JA (2003) Stroke 34(8):2013–2018

    Article  CAS  PubMed  Google Scholar 

  6. Bosch-Morell F, Romá J, Puertas FJ, Marín N, Díaz-Llopis M, Romero FJ (1999) Free Radical Biol Med 27:388–391

    Article  CAS  Google Scholar 

  7. Aydemir O, Güler M, Kaya MK, Deniz N, Üstündağ B (2012) J Cataract Refract Surg 38(12):2160–2166

    Article  PubMed  Google Scholar 

  8. Acosta PB, Gross KC (1995) Eur J Pediatr 154:87–92

    Article  Google Scholar 

  9. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF (2008) Neurobiol Learn Mem 90:19–27

    Article  CAS  PubMed  Google Scholar 

  10. Hu TS, Datiles M, Kinoshita JH (1983) Invest Ophth Vis Sci 24(5):640–644

    CAS  Google Scholar 

  11. Sakthivel M, Geraldine P, Thomas PA (2011) Graef Arch Clin Exp 249:1201–1210

    Article  CAS  Google Scholar 

  12. Ohta Y, Torii H, Yamasaki T, Niwa T, Majima Y, Ishiguro I (1997) J Ocul Pharmacol Ther 13:537–550

    Article  CAS  PubMed  Google Scholar 

  13. Hirai T, Majima Y, Ohta Y, Ishiguro I (1986) Folia Ophthal Jpn (Nippon Ganka Kiyo) 37:1266–1270

    CAS  Google Scholar 

  14. Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW Jr, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN (2011) J Biol Chem 286:33203–33212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marchetti MA, Pizarro GO, Sagher D, DeAmicis C, Brot N, Hejtmancik JF, Weissbach H, Kantorow M (2005) Invest Ophth Vis Sci 46:2107–2112

    Article  Google Scholar 

  16. Freel CD, Gilliland KO, Wesley Lane C, Giblin FJ, Joseph Costello M (2002) Exp Eye Res 74:689–702

    Article  CAS  PubMed  Google Scholar 

  17. De Luca A, Sacchetta P, Nieddu M, Di Ilio C, Favaloro B (2007) BMC Mol Biol 8:39–49

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hafeman DG, Sunde RA, Hoekstra WG (1974) J Nutr 104:580–587

    CAS  PubMed  Google Scholar 

  19. Cao G, Cutler RG (1995) Arch Biochem Biophys 320:106–114

    Article  CAS  PubMed  Google Scholar 

  20. Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, Ezsol Z, Tonutti L, Taboga C (1998) Eur J Clin Invest 28:329–333

    Article  CAS  PubMed  Google Scholar 

  21. Andley UP (2008) Int J Biochem Cell Biol 40(3):317–323

    Article  CAS  PubMed  Google Scholar 

  22. Cheng HM, Gonzalez RG (1986) Metabolism 35:10–14

    Article  CAS  PubMed  Google Scholar 

  23. Lee AS (2001) Trends Biochem Sci 26:504–510

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy CA, Taylor HR (1996) Invest Ophthalmol Vis Sci 37:1720–1723

    Google Scholar 

  25. Naziroglu M, Karaoğlu A, Aksoy AO (2004) Toxicology 195(2–3):221–230

    Article  CAS  PubMed  Google Scholar 

  26. Kador PF, Inoue J, Secchi EF, Lizak MJ, Rodriguez L, Mori K, Greentree W, Blessing K, Lackner PA, Sato S (1998) Exp Eye Res 67(2):203–208

    Article  CAS  PubMed  Google Scholar 

  27. Peek R, McAvoy JW, Lubsen NH, Schoenmakers JG (1992) Dev Biol 152(1):152–160

    Article  CAS  PubMed  Google Scholar 

  28. Spector A (1995) FASEB J 9:1173–1182

    CAS  PubMed  Google Scholar 

  29. Dai J, Liu H, Zhou J, Huang K (2016) Int J Mol Sci 17(2):E231

    Article  PubMed  Google Scholar 

  30. Ou Y, Liao G, Yuan Z, Wu W (2012) Curr Eye Res 37(3):187–194

    Article  CAS  PubMed  Google Scholar 

  31. Orrenius S (2007) Drug Metab Rev 39:443–455

    Article  CAS  PubMed  Google Scholar 

  32. Shimizu N, Hosogi N, Hyon G, Jiang S, Inoue K, Park P (2006) J Gen Plant Pathol 72:6–15

    Article  CAS  Google Scholar 

  33. Wang W, Xia MX, Chen J, Yuan R, Deng FN, Shen FF (2016) Biochemistry (Mosc) 81(5):465–480

    Article  CAS  Google Scholar 

  34. Chul-Ho J, Sang HJ (2016) J Cancer Prev 21(1):13–20

    Article  Google Scholar 

  35. Lou MF (2003) Prog Retin Eye Res 22(5):657–682

    Article  CAS  PubMed  Google Scholar 

  36. Steinbrenner H, Sies H (2009) Biochim Biophys Acta 1790(11):1478–1485

    Article  CAS  PubMed  Google Scholar 

  37. Reeves MA, Hoffmann PR (2009) Cell Mol Life Sci 66:2457–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu A, Prophete C, Chen LC, Emala CW, Cohen MD (2011) J Toxicol Env Health 74:887–902

    Article  CAS  Google Scholar 

  39. Kim HY, Gladyshev VN (2007) Biochem J 407:321–329

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Zhang W, Li P, Huang KX (2011) Exp Eye Res 92:401–407

    Article  CAS  PubMed  Google Scholar 

  41. Gladyshev VN, Jeang KT, Wootton JC, Hatfield DL (1998) J Biol Chem 273:8910–8915

    Article  CAS  PubMed  Google Scholar 

  42. Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN (2001) J Biol Chem 276:15330–15336

    Article  CAS  PubMed  Google Scholar 

  43. Labunskyy VM, Yoo MH, Hatfield DL, Gladyshev VN (2009) Biochemistry 48:8458–8465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferguson AD, Labunskyy VM, Fomenko DE, Araç D, Chelliah Y, Amezcua CA, Rizo J, Gladyshev VN, Deisenhofer J (2006) J Biol Chem 281:3536–3543

    Article  CAS  PubMed  Google Scholar 

  45. Parnham MJ, Sies H (2013) Biochem Pharmacol 86:1248–1253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Project No. 21271077). We give our sincere thanks to the faculties from Analytical and Testing Centre of Huazhong University of Science and Technology for their help in the bioanalysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Kaixun Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Zhou, J., Liu, H. et al. Selenite and ebselen supplementation attenuates d-galactose-induced oxidative stress and increases expression of SELR and SEP15 in rat lens. J Biol Inorg Chem 21, 1037–1046 (2016). https://doi.org/10.1007/s00775-016-1400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1400-9

Keywords

Navigation