Skip to main content
Log in

Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Accumulating evidence suggests that oxidative stress underlies age-related formation of cataract, and that antioxidants retard cataractogenesis. This study aimed to evaluate whether ellagic acid, a natural polyphenol with antioxidant properties, prevents alterations in the lenticular protein profile in an experimental model of selenite cataract.

Methods

Alterations in lenticular protein were determined by two-dimensional electrophoresis (2DE) and image analysis. Eluted αA-crystallin spots were analyzed by mass spectrometry. Western blot analysis was also performed to confirm the differential expression of certain crystallins and cytoskeletal proteins.

Results

In cataractous lenses, 2DE and image analysis revealed approximately 45 and 60 prominent spots in soluble and insoluble protein fractions respectively. Analysis of the pI and molecular weight of protein spots revealed differences in the expression of crystallin proteins in soluble and insoluble fractions. Western blot analysis confirmed changes in the expression of αA- and βB1- crystallins in both soluble and insoluble protein fractions, while mass spectrometry confirmed the degradation of αA-crystallin in selenite cataractous lenses. Western blot analysis also confirmed the occurrence of altered expression of certain cytoskeletal proteins in insoluble fractions. However, the lenticular protein profile in lenses from selenite-challenged, ellagic acid-treated rats was essentially similar to that noted in lenses from normal rats.

Conclusions

The present study confirms the importance of structural and cytoskeletal proteins in the maintenance of lenticular transparency; the results also suggest that ellagic acid prevents lenticular protein alterations induced by selenite in an experimental setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    Article  PubMed  CAS  Google Scholar 

  2. Benedek GB (1971) Theory of transparency of the eye. Appl Opt 10:459–473

    Article  PubMed  CAS  Google Scholar 

  3. Bloemendal H, De Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins Prog Biophys Mol Biol 86:407–485

    Article  CAS  Google Scholar 

  4. Klemenz R, Frohli E, Steiger RH, Schafer R, Aoyama A (1991) Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci USA 88:3652–3656

    Article  PubMed  CAS  Google Scholar 

  5. Merck KB, Groenen PJ, Voorter CE, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268:1046–1052

    PubMed  CAS  Google Scholar 

  6. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  PubMed  CAS  Google Scholar 

  7. Rao PV, Huang QL, Horwitz J, Zigler JS Jr (1995) Evidence that alpha-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim Biophys Acta 1245:439–447

    PubMed  Google Scholar 

  8. Muchowski PJ, Bassuk JA, Lubsen NH, Clark JI (1997) Human alphaB-crystallin. Small heat shock protein and molecular chaperone. J Biol Chem 272:2578–2582

    Article  PubMed  CAS  Google Scholar 

  9. Rajaraman K, Raman B, Ramakrishna T, Rao CM (2001) Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase onits thermal denaturation. FEBS Lett 497:118–123

    Article  PubMed  CAS  Google Scholar 

  10. Hanson SR, Hasan A, Smith DL, Smith JB (2000) The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res 71:195–207

    Article  PubMed  CAS  Google Scholar 

  11. Mousa GY, Trevithick JR (1979) Actin in the lens: changes in actin during differentiation of lens epithelial cells in vivo. Exp Eye Res 29:71–81

    Article  PubMed  CAS  Google Scholar 

  12. Ellis M, Alousi S, Lawniczak J, Maisel H, Welsh M (1984) Studies on lens vimentin. Exp Eye Res 38:195–202

    Article  PubMed  CAS  Google Scholar 

  13. Ireland M, Maisel H (1984) Evidence for a calcium activated protease specific for lens intermediate filaments. Curr Eye Res 3:423–429

    Article  PubMed  CAS  Google Scholar 

  14. Tagliavini J, Gandolfi SA, Maraini G (1986) Cytoskeleton abnormalities in human senile cataract. Curr Eye Res 5:903–910

    Article  PubMed  CAS  Google Scholar 

  15. Bloemendal H (1991) Disorganization of membranes and abnormal intermediate filament assembly lead to cataract. Invest Ophthalmol Vis Sci 32:445–455

    PubMed  CAS  Google Scholar 

  16. Carter JM, Hutcheson AM, Quinlan RA (1995) In vitro studies on the assembly properties of the lens proteins CP49, CP115: coassembly with a-crystallin but not with vimentin. Exp Eye Res 60:181–192

    Article  PubMed  CAS  Google Scholar 

  17. Bettelheim FA, Qin C, Zigler JS Jr (1995) Calcium cataract: a model for optical anisotropy fluctuations. Exp Eye Res 60:153–157

    Article  PubMed  CAS  Google Scholar 

  18. Alcala J, Maisel H (1985) Biochemistry of lens plasma membrane and cytoskeleton. In The ocular lens. Marcel Dekker, New York, pp 169–222

    Google Scholar 

  19. Jaffe NS, Horwitz JH (1992) Lens Biochemistry. In Lens and cataract. Gower Medical Publishing, New York, pp 4.1–4.13

    Google Scholar 

  20. Paterson CA, Delamere NA (1992) Adler’s physiology of the eye. In: Hart WM. (ed) Mosby Inc, St. Louis, pp 348–383

  21. Ozaki L, Jap P, Bloemendal H (1985) Electron microscopic study of water-insoluble fractions in normal and cataractous human lens fibers. Ophthalmic Res 17:257–261

    Article  PubMed  CAS  Google Scholar 

  22. Sakthivel M, Elanchezhian R, Ramesh E, Isai M, Jesudasan CN, Thomas PA, Geraldine P (2008) Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res 86:251–259

    Article  PubMed  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Courchesne PL, Patterson SD (1999) Identification of proteins by matrix-assisted laser desorption/ionization mass spectrometry using peptide and fragment ion masses. Methods Mol Biol 112:487–511

    PubMed  CAS  Google Scholar 

  25. Spector A (1984) The search for a solution to senile cataract. Invest Ophthalmol Vis Sci 25:130–146

    PubMed  CAS  Google Scholar 

  26. Kramps HA, Hoenders HJ, Wollensak J (1976) Protein changes in the human lens during development of senile nuclear cataract. Biochim Biophys Acta 434(1):32–43

    PubMed  CAS  Google Scholar 

  27. Shearer TR, Ma H, Fukiage C, Azuma M (1997) Selenite nuclear cataract: review of the model. Mol Vis 3:8

    PubMed  CAS  Google Scholar 

  28. Sakthivel M, Elanchezhian R, Thomas PA, Geraldine P (2010) Alterations in lenticular proteins during ageing and selenite-induced cataractogenesis in Wistar rats. Mol Vis 16:445–453

    PubMed  CAS  Google Scholar 

  29. Horwitz J, Bova M, Huang QL, Ding L, Yaron O, Lowman S (1998) Mutation of aB-crystallin: effects on chaperone-like activity. Int J Biol Macromol 22:263–269

    Article  PubMed  CAS  Google Scholar 

  30. Augusteyn RC (2004) alpha-crystallin: a review of its structure and function. Clin Exp Optom 87(6):356–366

    Article  PubMed  Google Scholar 

  31. Groenen PJ, Merck KB, de Jong WW, Bloemendal H (1994) Structure and modifications of the junior chaperone a-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225:1–19

    Article  PubMed  CAS  Google Scholar 

  32. Hook DW, Harding JJ (1997) Molecular chaperones protect catalase against thermal stress. Eur J Biochem 247:380–385

    Article  PubMed  CAS  Google Scholar 

  33. Ganea E (2001) Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci 2:205–225

    Article  PubMed  CAS  Google Scholar 

  34. Reddy GB, Reddy PY, Suryanarayana P (2001) alphaA- and alphaBcrystallins protect glucose-6-phosphate dehydrogenase against UVB irradiation-induced inactivation. Biochem Biophys Res Commun 282:712–716

    Article  PubMed  CAS  Google Scholar 

  35. Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76(2):145–153

    Article  PubMed  CAS  Google Scholar 

  36. Ueda Y, Fukiage C, Shih M, Shearer TR, David LL (2002) Mass measurements of C-terminally truncated alpha-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lens. Mol Cell Proteomics 1(5):357–365

    Article  PubMed  CAS  Google Scholar 

  37. Wang Z, Bunce GE, Hess JL (1993) Selenite and Ca2+ homeostasis in the rat lens: effect on Ca-ATPase and passive Ca2+ transport. Curr Eye Res 12:213–218

    Article  PubMed  CAS  Google Scholar 

  38. Biswas S, Harris F, Dennison S, Singh J, Phoenix DA (2004) Calpains: targets of cataract prevention? Trends Mol Med 10(2):78–84

    Article  PubMed  CAS  Google Scholar 

  39. Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50(7):2200–2206

    Article  PubMed  CAS  Google Scholar 

  40. David LL, Shearer TR (1993) Beta-crystallins insolubilized by calpain II in vitro contain cleavage sites similar to beta-crystallins insolubilized during cataract. FEBS Lett 324(3):265–270

    Article  PubMed  CAS  Google Scholar 

  41. David LL, Wright JW, Shearer TR (1992) Calpain II induced insolubilization of lens beta-crystallin polypeptides may induce cataract. Biochim Biophys Acta 1139(3):210–216

    PubMed  CAS  Google Scholar 

  42. Nelson WJ, Traub P (1982) Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin. J Biol Chem 257:5544–5553

    PubMed  CAS  Google Scholar 

  43. Roy D, Chiesa R, Spector A (1983) Lens calcium activated proteinase: degradation of vimentin. Biochem Biophys Res Commun 116:204–209

    Article  PubMed  CAS  Google Scholar 

  44. Lorand L, Conrad SM, Velasco PT (1984) Degradation of vimentin in a cataract model: the Ca2+-treated lens. Ann NY Acad Sci 45:703–707

    Google Scholar 

  45. Lorand L, Conrad SM, Velasco PT (1985) Formation of a 55000-weight cross-linked b crystallin dimer in the Ca2+-treated lens. A model for cataract. Biochemistry 24:1525–1531

    Article  PubMed  CAS  Google Scholar 

  46. Velasco PT, Murthy P, Goll DE, Lorand L (1990) Cross-linking and proteolysis in Ca2+-treated lens homogenates. Biochim Biophys Acta 1040:187–191

    Article  PubMed  CAS  Google Scholar 

  47. Truscott RJW, Marcantonio JM, Tomlinson J, Duncan G (1989) Calcium-induced cleavage and breakdown of spectrin in the rat lens. Biochem Biophys Res Commun 162:1472–1477

    Article  PubMed  CAS  Google Scholar 

  48. Tamada Y, Fukiage C, Nakamura Y, Azuma M, Kim YH, Shearer TR (2000) Evidence for apoptosis in the selenite rat model of cataract. Biochem Biophys Res Commun 275(2):300–306

    Article  PubMed  CAS  Google Scholar 

  49. Matsushima H, David LL, Hiraoka T, Clark JI (1997) Loss of cytoskeletal proteins and lens cell opacification in the selenite cataract model. Exp Eye Res 64:387–395

    Article  PubMed  CAS  Google Scholar 

  50. DalleDonne I, Milzani A, Colombo R (1995) H2O2- treated actin: assembly and polymer interactions with cross-linking proteins. Biophys J 69:2710–2719

    Article  PubMed  CAS  Google Scholar 

  51. Luduena RF, Roach MC (1991) Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharm Ther 49:133–152

    Article  Google Scholar 

  52. Rogers KR, Morris CJ, Blake DR (1991) Oxidation of thiol in the vimentin cytoskeleton. Biochem J 275:789–791

    PubMed  CAS  Google Scholar 

  53. Sanderson J, Marcantonio JM, Duncan G (1996) Calcium ionophore induced proteolysis and cataract: inhibition by cell permeable calpain antagonists. Biochem Biophys Res Commun 218:893–901

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Instrumentation facility provided by University Grants Commission—Special Assistance Programme (UGC-SAP) of the Department of Animal Science, Bharathidasan University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitchairaj Geraldine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakthivel, M., Geraldine, P. & Thomas, P.A. Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid. Graefes Arch Clin Exp Ophthalmol 249, 1201–1210 (2011). https://doi.org/10.1007/s00417-011-1644-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1644-6

Keywords

Navigation