Skip to main content
Log in

Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Hyd-1:

Hydrogenase-1

Hyd-2:

Hydrogenase-2

Hyd-5:

Hydrogenase-5

MB:

Methylene blue

MBH:

Membrane bound hydrogenase(s)

Rh. leguminosarum :

Rhizobium leguminosarum

R. eutropha :

Ralstonia eutropha

References

  1. Stiebritz MT, Reiher M (2012) Chem Sci 3:1739–1751

    Article  CAS  Google Scholar 

  2. Parkin A, Bowman L, Roessler MM, Davies RA, Palmer T, Armstrong FA, Sargent F (2012) FEBS Lett 586:536–544

    Article  CAS  PubMed  Google Scholar 

  3. Zbell AL, Benoit SL, Maier RJ (2007) Microbiology 153:3508–3516

    Article  CAS  PubMed  Google Scholar 

  4. Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) Nat Chem Biol 7:310–318

    Article  CAS  PubMed  Google Scholar 

  5. Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA (2011) J Am Chem Soc 133:16881–16892

    Article  CAS  PubMed  Google Scholar 

  6. Pandelia M-E, Fourmond V, Tron-Infossi P, Lojou E, Bertrand P, Léger C, Giudici-Orticoni M-T, Lubitz W (2010) J Am Chem Soc 132:6991–7004

    Article  CAS  PubMed  Google Scholar 

  7. Shomura Y, Yoon K-S, Nishihara H, Higuchi Y (2011) Nature 479:253–256

    Article  CAS  PubMed  Google Scholar 

  8. Parkin A, Sargent F (2012) Curr Opin Chem Biol 16:26–34

    Article  CAS  PubMed  Google Scholar 

  9. Fritsch J, Lenz O, Friedrich B (2013) Nat Rev Microbiol 11:106–114

    Article  CAS  PubMed  Google Scholar 

  10. Stripp ST, Soboh B, Lindenstrauss U, Braussemann M, Herzberg M, Nies DH, Sawers RG, Heberle J (2013) Biochemistry 52:3289–3296

    Article  CAS  PubMed  Google Scholar 

  11. Stripp ST, Lindenstrauss U, Sawers RG, Soboh B (2015) PLoS One 10:e0133118

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stripp ST, Lindenstrauss U, Granich C, Sawers RG, Soboh B (2014) PLoS One 9:e107488

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dubini A, Sargent F (2003) FEBS Lett 549:141–146

    Article  CAS  PubMed  Google Scholar 

  14. Fritsch J, Lenz O, Friedrich B (2011) J Bacteriol 193:2487–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B (2007) Mol Microbiol 66:453–467

    Article  CAS  PubMed  Google Scholar 

  16. Fritsch J, Siebert E, Priebe J, Zebger I, Lendzian F, Teutloff C, Friedrich B, Lenz O (2014) J Biol Chem 289:7982–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forzi L, Sawers RG (2007) Biometals 20:565–578

    Article  CAS  PubMed  Google Scholar 

  18. Pinske C, Sawers RG (2012) PLoS One 7:e31755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albareda M, Pacios LF, Manyani H, Rey L, Brito B, Imperial J, Ruiz-Argüeso T, Palacios JM (2014) J Biol Chem 289:21217–21229

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manyani H, Rey L, Palacios JM, Imperial J, Ruiz-Argüeso T (2005) J Bacteriol 187:7018–7026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rey L, Hidalgo E, Palacios J, Ruiz-Argüeso T (1992) J Mol Biol 228:998–1002

    Article  CAS  PubMed  Google Scholar 

  22. Lamichhane-Khadka R, Benoit SL, Miller-Parks EF, Maier RJ (2015) Infect Immun 83:311–316

    Article  PubMed  Google Scholar 

  23. Bowman L, Flanagan L, Fyfe Paul K, Parkin A, Hunter William N, Sargent F (2014) Biochem J 458:449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lam LH, Monack DM (2014) PLoS Pathog 10:e1004527

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maier L, Vyas R, Cordova Carmen D, Lindsay H, Schmidt Thomas Sebastian B, Brugiroux S, Periaswamy B, Bauer R, Sturm A, Schreiber F, von Mering C, Robinson Mark D, Stecher B, Hardt W-D (2013) Cell Host Microbe 14:641–651

    Article  CAS  PubMed  Google Scholar 

  26. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  27. Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) J Bacteriol 178:4522–4529

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Albareda M, Manyani H, Imperial J, Brito B, Ruiz-Argüeso T, Böck A, Palacios J-M (2012) BMC Microbiol 12:1–13

    Article  Google Scholar 

  29. Fritsche E, Paschos A, Beisel H-G, Böck A, Huber R (1999) J Mol Biol 288:989–998

    Article  CAS  PubMed  Google Scholar 

  30. Thomas C, Muhr E, Sawers RG (2015) J Bacteriol 197:2989–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ludwig M, Schubert T, Zebger I, Wisitruangsakul N, Saggu M, Strack A, Lenz O, Hildebrandt P, Friedrich B (2009) J Biol Chem 284:2159–2168

    Article  CAS  PubMed  Google Scholar 

  32. Chan Chung KC, Zamble DB (2011) J Biol Chem 286:43081–43090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  34. Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR (1989) J Bacteriol 171:4617–4622

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ize B, Stanley NR, Buchanan G, Palmer T (2003) Mol Microbiol 48:1183–1193

    Article  CAS  PubMed  Google Scholar 

  36. Pinske C, Krüger S, Soboh B, Ihling C, Kuhns M, Braussemann M, Jaroschinsky M, Sauer C, Sargent F, Sinz A, Sawers RG (2011) Arch Microbiol 193:893–903

    Article  CAS  PubMed  Google Scholar 

  37. Ballantine SP, Boxer DH (1985) J Bacteriol 163:454–459

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Flanagan Lindsey A, Parkin A (2016) Biochem Soc Trans 44:315–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

  40. Dubini A, Pye RL, Jack RL, Palmer T, Sargent F (2002) Int J Hydrogen Energy 27:1413–1420

    Article  CAS  Google Scholar 

  41. Parish D, Benach J, Liu G, Singarapu K, Xiao R, Acton T, Su M, Bansal S, Prestegard J, Hunt J, Montelione G, Szyperski T (2008) J Struct Funct Genomics 9:41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by EPSRC Grant EP/K031589/1 (AP) and by BBSRC via a Targeted Priority Studentship [Grant Number BB/G016690/1] (FS). We thank David Lloyd for assistance in developing the glove-box methylene blue assay method and Aaron Barnes for conducting preliminary electrochemistry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Parkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowman, L., Balbach, J., Walton, J. et al. Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. J Biol Inorg Chem 21, 865–873 (2016). https://doi.org/10.1007/s00775-016-1385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1385-4

Keywords

Navigation