Skip to main content
Log in

Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif

  • Published:
Journal of Structural and Functional Genomics

Abstract

The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247–D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the ‘thioredoxin-like clan’. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NESG:

Northeast Structural Genomics Consortium

NMR:

Nuclear magnetic resonance

NSLF:

National synchrotron light source

PDB:

Protein data bank

RDC:

Residual dipolar coupling

PSVS:

Protein structure validation suite

References

  1. Finn RD, Mistry J, Shuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Nucleic Acids Res 34:D247–D251. doi:10.1093/nar/gkj149

    Article  PubMed  CAS  Google Scholar 

  2. Dubini A, Sargent F (2003) FEBS Lett 549:141–146. doi:10.1016/S0014-5793(03)00802-0

    Article  PubMed  CAS  Google Scholar 

  3. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterson R, Wilson RK (2001) Nature 413:852–856. doi:10.1038/35101614

    Article  PubMed  CAS  Google Scholar 

  4. Liu GH, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton T, Arrowsmith C, Montelione G, Szyperski T (2005) Proc Natl Acad Sci USA 102:10487–10492. doi:10.1073/pnas.0504338102

    Article  PubMed  CAS  Google Scholar 

  5. Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini JM, Baran MC, Chiang YW, Climent T, Cooper B, Denissova N, Douglas SM, Everett JK, Ho CK, Macapagal D, Paranji RK, Shastry R, Shih LJ, Swapna GVT, Wilson M, Wu MJ, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Methods Enzymol 394:210–243. doi:10.1016/S0076-6879(05)94008-1

    Article  PubMed  CAS  Google Scholar 

  6. Atreya HS, Szyperski T (2004) Proc Natl Acad Sci USA 101:9642–9647. doi:10.1073/pnas.0403529101

    Article  PubMed  CAS  Google Scholar 

  7. Hansen MR, Hanson P, Pardi A (2000) Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions, Rna-Ligand Interactions Pt A. Academic Press Inc, San Diego, pp 220–240

    Google Scholar 

  8. Kim S, Szyperski T (2003) J Am Chem Soc 125:1385–1393. doi:10.1021/ja028197d

    Article  PubMed  CAS  Google Scholar 

  9. Shen Y, Atreya HS, Liu GH, Szyperski T (2005) J Am Chem Soc 127:9085–9099. doi:10.1021/ja0501870

    Article  PubMed  CAS  Google Scholar 

  10. Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR Spectroscopy. Academic Press, San Diego

    Google Scholar 

  11. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Article  PubMed  CAS  Google Scholar 

  12. Bartels C, Xia T, Billeter M, Guntert P, Wuthrich K (1995) J Biomol NMR 6:1–10. doi:10.1007/BF00417486

    Article  CAS  Google Scholar 

  13. Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) J Mol Biol 269:592–610. doi:10.1006/jmbi.1997.1052

    Article  PubMed  CAS  Google Scholar 

  14. Herrmann T, Güntert P, Wüthrich K (2002) J Mol Biol 319:209–227. doi:10.1016/S0022-2836(02)00241-3

    Article  PubMed  CAS  Google Scholar 

  15. Güntert P, Mumenthaler C, Wüthrich K (1997) J Mol Biol 273:283–298. doi:10.1006/jmbi.1997.1284

    Article  PubMed  Google Scholar 

  16. Huang YJ, Moseley H, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione G (2005) Methods Enzymol 394:111–141. doi:10.1016/S0076-6879(05)94005-6

    Article  PubMed  CAS  Google Scholar 

  17. Valafar H, Prestegard JH (2004) J Magn Reson 167:228–241. doi:10.1016/j.jmr.2003.12.012

    Article  PubMed  CAS  Google Scholar 

  18. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) J Magn Reson 160:65–73. doi:10.1016/S1090-7807(02)00014-9

    Article  PubMed  CAS  Google Scholar 

  19. Schwieters CD, Kuszewski J, Clore GM (2006) Prog Nucl Magn Reson Spectrosc 48:47–62. doi:10.1016/j.pnmrs.2005.10.001

    Article  CAS  Google Scholar 

  20. Linge JP, Williams MA, Spronk CA, Bonvin AM, Nilges M (2003) Proteins 50:496–506. doi:10.1002/prot.10299

    Article  PubMed  CAS  Google Scholar 

  21. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921. doi:10.1107/S0907444998003254

    Article  PubMed  CAS  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  PubMed  CAS  Google Scholar 

  23. Bhattacharya A, Tejero R, Montelione G (2007) Proteins 66:778–795. doi:10.1002/prot.21165

    Article  PubMed  CAS  Google Scholar 

  24. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  25. Guntert P, Braun W, Wuthrich K (1991) J Mol Biol 217:517–530. doi:10.1016/0022-2836(91)90754-T

    Article  PubMed  CAS  Google Scholar 

  26. Neri D, Szyperski T, Otting G, Senn H, Wüthrich K (1989) Biochemistry 28:7510–7516. doi:10.1021/bi00445a003

    Article  PubMed  CAS  Google Scholar 

  27. Cornilescu G, Delaglio F, Bax A (1999) J Biomol NMR 13:289–302. doi:10.1023/A:1008392405740

    Article  PubMed  CAS  Google Scholar 

  28. Prestegard JH, Bougault CM, Kishore AI (2004) Chem Rev 104:3519–3540. doi:10.1021/cr030419i

    Article  PubMed  CAS  Google Scholar 

  29. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Loannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, DE Tolmie , Wenger KR, Yao H, Markley JL (2007) Nucleic Acids Res . doi:10.1093/nar/gkm957

    Google Scholar 

  30. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486. doi:10.1007/BF00228148

    Article  PubMed  CAS  Google Scholar 

  31. Word JM, Bateman RC, Presley BK, Lovell SC, Richardson DC (2000) Protein Sci 9:2251–2259

    Article  PubMed  CAS  Google Scholar 

  32. Huang YJ, Powers R, Montelione G (2005) J Am Chem Soc 127:1665–1674. doi:10.1021/ja047109h

    Article  PubMed  CAS  Google Scholar 

  33. Matthews BW (1968) J Mol Biol 33:491–497. doi:10.1016/0022-2836(68)90205-2

    Article  PubMed  CAS  Google Scholar 

  34. Terwilliger TC, Berendzen J (1999) Acta Crystallogr D Biol Crystallogr 55:849–861. doi:10.1107/S0907444999000839

    Article  PubMed  CAS  Google Scholar 

  35. Terwilliger TC (2000) Acta Crystallogr D Biol Crystallogr 56:965–972. doi:10.1107/S0907444900005072

    Article  PubMed  CAS  Google Scholar 

  36. Terwilliger TC (2003) Acta Crystallogr D Biol Crystallogr 59:38–44. doi:10.1107/S0907444902018036

    Article  PubMed  CAS  Google Scholar 

  37. Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A 47:110–119. doi:10.1107/S0108767390010224

    Article  PubMed  Google Scholar 

  38. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski JMN, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Cryst Sect D 54:905–921. doi:10.1107/S0907444998003254

    Article  Google Scholar 

  39. Engh R, Huber R (1991) Acta Crystallogr A 47:392–400. doi:10.1107/S0108767391001071

    Article  Google Scholar 

  40. Drenth J (1994) Principles of protein X-ray crystallography. Springer, New York

    Google Scholar 

  41. Zhang Y, Skolnick J (2005) Nucleic Acids Res 33:2302–2309. doi:10.1093/nar/gki524

    Article  PubMed  CAS  Google Scholar 

  42. Holm L, Sander CR (1995) Trends Biochem Sci 20:478–480. doi:10.1016/S0968-0004(00)89105-7

    Article  PubMed  CAS  Google Scholar 

  43. Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) J Bacteriol 178:4522–4529

    PubMed  CAS  Google Scholar 

  44. Glaser F, Pupko T, Paz I, Bell R, Bechor-Shental D, Martz E, Ben-Tal N (2003) Bioinformatics 19:163–164. doi:10.1093/bioinformatics/19.1.163

    Article  PubMed  CAS  Google Scholar 

  45. Nicholls A, Sharp KA, Honig B (1991) Proteins 11:281–296. doi:10.1002/prot.340110407

    Article  PubMed  CAS  Google Scholar 

  46. Mayrose I, Graur D, Ben-Tal N, Pupko T (2004) Mol Biol Evol 21:1781–1791. doi:10.1093/molbev/msh194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (U54 GM074958–01) and the National Science Foundation (MCB 0416899 to T.S.). We thank Kellie Cunningham, Chi Kent Ho, Haleema Janjua, Li-Chung Ma, and Li Zhao (Rutgers University) for help preparing the protein samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Szyperski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parish, D., Benach, J., Liu, G. et al. Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif. J Struct Funct Genomics 9, 41–49 (2008). https://doi.org/10.1007/s10969-008-9050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-008-9050-y

Keywords

Navigation