Skip to main content
Log in

DNA studies of newly synthesized heteroleptic platinum(II) complexes [Pt(bpy)(iip)]2+ and [Pt(bpy)(miip)]2+

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two new mono-nuclear heteroleptic platinum(II) complexes, [Pt(bpy)(iip)](PF6)2 (1) and [Pt(bpy)(miip)](PF6)2·2H2O (2) (bpy is 2,2′-bipyridine; iip is 2-(imidazo-4-yl)-1H-imidazo[4,5-f] [1,10] phenanthroline; miip is 2-(1-methylimidazo-2-yl)-1H-imidazo[4,5-f] [1, 10] phenanthroline), have been synthesized and fully characterized by CHN analysis, electrospray ionization and MALDI-TOF mass spectrometry, 1H NMR, FT-IR (ATR), and UV–Vis spectrophotometer. Cytotoxicity, ability to inhibit DNA transcription and DNAse activity of the complexes were studied. The DNA-binding behaviors of both complexes have also been studied by spectroscopic methods, cyclic voltammetry and viscosity measurements. Both complexes showed cytotoxic properties and 2 was more cytotoxic than 1. DNA transcription was inhibited upon increasing concentrations of both complexes. The complex 2 was found to be a better inhibitor than 1. The same pattern can be seen in the DNAse profile of the complexes. In addition, 2 was found to promote cleavage of pBR322 DNA at a lower concentration than 1. The spectroscopic, electrochemical and viscometric results indicate that both complexes show some degree of binding to DNA in an intercalative mode, resulting in intrinsic binding constants K b = 3.55 ± 0.6 × 104 M−1 and 7.01 ± 0.9 × 104 M−1 for 1 and 2, respectively. The difference in the DNA-binding affinities of 1 and 2 may presumably be explained by the methylated imidazole nitrogen atom that makes the compound more hydrophobic and gives better intercalative binding ability to DNA’s hydrophobic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gaur R, Mishra L (2013) RSC Adv 3:12210–12219

    Article  CAS  Google Scholar 

  2. Coban B, Yildiz U, Sengul A (2013) J Biol Inorg Chem 18:461–471

    Article  CAS  PubMed  Google Scholar 

  3. Fu XB, Lin ZH, Liu HF, Le XY (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 122:22–33

    Article  CAS  Google Scholar 

  4. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2014) Coord Chem Rev 284:329–350

    Article  Google Scholar 

  5. Patel M, Patel C, Joshi H, Vekariya P (2014) Appl Biochem Biotech 172:1846–1858

    Article  CAS  Google Scholar 

  6. Shobha Devi C, Nagababu P, Natarajan S, Deepika N, Venkat Reddy P, Veerababu N, Singh SS, Satyanarayana S (2014) Eur J Med Chem 72:160–169

    Article  CAS  PubMed  Google Scholar 

  7. Qin Q-P, Chen Z-F, Shen W-Y, Jiang Y-H, Cao D, Li Y-L, Xu Q-M, Liu Y-C, Huang K-B, Liang H (2015) Eur J Med Chem 89:77–87

    Article  CAS  PubMed  Google Scholar 

  8. Shahabadi N, Nemati L (2014) Appl Biochem Biotech 172:2800–2814

    Article  CAS  Google Scholar 

  9. Patel MN, Patel CR, Joshi HN, Thakor KP (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 127:261–267

    Article  CAS  Google Scholar 

  10. Kumari R, Bhowmick S, Das N, Das P (2014) J Biol Inorg Chem 19:1221–1232

    Article  CAS  PubMed  Google Scholar 

  11. Shahabadi N, Maghsudi M (2013) Dyes Pigments 96:377–382

    Article  CAS  Google Scholar 

  12. Farrell N (2002) Coord Chem Rev 232:1–4

    Article  CAS  Google Scholar 

  13. Kelley SO, Holmlin RE, Stemp EDA, Barton JK (1997) J Am Chem Soc 119:9861–9870

    Article  CAS  Google Scholar 

  14. Gabra NM, Mustafa B, Kumar YP, Shobha Devi C, Shilpa M, Reddy KL, Satyanarayana S (2014) Med Chem Res 23:224–235

    Article  CAS  Google Scholar 

  15. Miao T-F, Li J, Liao S-Y, Zheng K-C, Ji L-N (2010) Inorg Chim Acta 363:3880–3886

    Article  CAS  Google Scholar 

  16. Sun B, Wang Y-C, Qian C, Chu J, Liang S-M, Chao H, Ji L-N (2010) J Mol Struct 963:153–159

    Article  CAS  Google Scholar 

  17. Tan L-F, Wang F, Chao H, Zhou Y-F, Weng C (2007) J Inorg Biochem 101:700–708

    Article  CAS  PubMed  Google Scholar 

  18. Wu J-Z, Yuan L (2004) J Inorg Biochem 98:41–45

    Article  CAS  PubMed  Google Scholar 

  19. Zhang HG, Tao XT, Chen KS, Yuan CX, Yan SN, Jiang MH (2011) Chinese Chem Lett 22:647–650

    Article  CAS  Google Scholar 

  20. Liu X-W, Lu J-L, Chen Y-D, Li L, Zhang D-S (2011) Inorg Chim Acta 379:1–6

    Article  CAS  Google Scholar 

  21. Liu XW, Shen YM, Lu JL, Chen YD, Li L, Zhang DS (2010) Spectrochim Acta Part A Mol Biomol Spectrosc 77:522–527

    Article  Google Scholar 

  22. Pedras B, Batista RMF, Tormo L, Costa SPG, Raposo MMM, Orellana G, Capelo JL, Lodeiro C (2012) Inorg Chim Acta 381:95–103

    Article  CAS  Google Scholar 

  23. Li Z-S, Yang H-X, Zhang A-G, Luo H, Wang K-Z (2011) Inorg Chim Acta 370:132–140

    Article  CAS  Google Scholar 

  24. Kumar KA, Reddy KL, Satyanarayana S (2010) Transit Metal Chem 35:713–720

    Article  CAS  Google Scholar 

  25. Coban B, Yildiz U (2014) Appl Biochem Biotech 172:248–262

    Article  CAS  Google Scholar 

  26. Liu Y-J, Liang Z-H, Li Z-Z, Yao J-H, Huang H-L (2011) J Organometal Chem 696:2728–2735

    Article  CAS  Google Scholar 

  27. Grehl M, Krebs B (1994) Inorg Chem 33:3877–3885

    Article  CAS  Google Scholar 

  28. Steck EA, Day AR (1943) J Am Chem Soc 65:452–456

    Article  CAS  Google Scholar 

  29. Cohen G, Eisenberg H (1969) Biopolymer 8:45–55

    Article  CAS  Google Scholar 

  30. Wu J-Z, Li L, Zeng T-X, Ji L-N, Zhou J-Y, Luo T, Li R-H (1997) Polyhedron 16:103–107

    Article  CAS  Google Scholar 

  31. Guney E, Yilmaz VT, Sengul A, Buyukgungor O (2010) Inorg Chim Acta 363:438–448

    Article  CAS  Google Scholar 

  32. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  33. Portugal J, Martin B, Vaquero A, Ferrer N, Villamarin S, Priebe W (2001) Curr Med Chem 8:1–8

    Article  CAS  PubMed  Google Scholar 

  34. Stellrecht CM, Chen LS (2011) Cancers 3:4170–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takusagawa F, Carlson RG, Weaver RF (2001) Bioorg Med Chem 9:719–725

    Article  CAS  PubMed  Google Scholar 

  36. Yan C, Higgins PJ (2013) BBA Rev Cancer 1835:76–85

    CAS  Google Scholar 

  37. Fu PKL, Bradley PM, Turro C (2003) Inorg Chem 42:878–884

    Article  CAS  PubMed  Google Scholar 

  38. Fu PKL, Turro C (2001) Chem Commun 279–280

  39. Barton JK, Raphael AL (1984) J Am Chem Soc 106:2466–2468

    Article  CAS  Google Scholar 

  40. Howe-Grant M, Wu KC, Bauer WR, Lippard SJ (1976) Biochem 15:4339–4346

    Article  CAS  Google Scholar 

  41. Borowska J, Sierant M, Sochacka E, Sanna D, Lodyga-Chruscinska E (2015) J Biol Inorg Chem 20:989–1004

    Article  CAS  PubMed  Google Scholar 

  42. Barton JK, Danishefsky A, Goldberg J (1984) J Am Chem Soc 106:2172–2176

    Article  CAS  Google Scholar 

  43. Arjmand F, Aziz M (2009) Eur J Med Chem 44:834–844

    Article  CAS  PubMed  Google Scholar 

  44. González-Ruiz V, I. Olives A, Martín MA, Ribelles P, Teresa RM, Carlos MJ (2011) An Overview of Analytical Techniques Employed to Evidence Drug-DNA Interactions. Applications to the Design of Genosensors. In: Komorowska MA, Olsztynska-Janus S (eds) Biomedical engineering, trends, research and technologies. InTech, India, pp 65–90

    Google Scholar 

  45. Sirajuddin M, Ali S, Badshah A (2013) J Photochem Photobiol B Biol 124:1–19

    Article  CAS  Google Scholar 

  46. Sirajuddin M, Ali S, Haider A, Shah NA, Shah A, Khan MR (2012) Polyhedron 40:19–31

    Article  CAS  Google Scholar 

  47. Cusumano M, Di Pietro ML, Giannetto A (1999) Inorg Chem 38:1754–1758

    Article  CAS  PubMed  Google Scholar 

  48. Cusumano M, Di Pietro ML, Giannetto A (2006) Inorg Chem 45:230–235

    Article  CAS  PubMed  Google Scholar 

  49. Uma Maheswari P, Palaniandavar M (2004) J Inorg Biochem 98:219–230

    Article  CAS  PubMed  Google Scholar 

  50. Liu J, Mei WJ, Lin LJ, Zheng KC, Chao H, Yun FC, Ji LN (2004) Inorg Chim Acta 357:285–293

    Article  CAS  Google Scholar 

  51. Tan L-F, Chao H (2007) Inorg Chim Acta 360:2016–2022

    Article  CAS  Google Scholar 

  52. Tan L-F, Chao H, Li H, Liu Y-J, Sun B, Wei W, Ji L-N (2005) J Inorg Biochem 99:513–520

    Article  CAS  PubMed  Google Scholar 

  53. Liu J-G, Ye B-H, Li H, Zhen Q-X, Ji L-N, Fu Y-H (1999) J Inorg Biochem 76:265–271

    Article  CAS  Google Scholar 

  54. Hutchins RA, Crenshaw JM, Graves DE, Denny WA (2003) Biochem 42:13754–13761

    Article  CAS  Google Scholar 

  55. Wang G, Yan C, Lu Y (2013) Colloids Surf B 106:28–36

    Article  CAS  Google Scholar 

  56. Mudasir, Wijaya K, Yoshioka N, Inoue H (2003) J Inorg Biochem 94:263–271

    Article  CAS  PubMed  Google Scholar 

  57. Chen L-M, Liu J, Chen J-C, Tan C-P, Shi S, Zheng K-C, Ji L-N (2008) J Inorg Biochem 102:330–341

    Article  CAS  PubMed  Google Scholar 

  58. Uslan C (2012) Şebnem Sesalan B Dyes Pigments 94:127–135

    Article  CAS  Google Scholar 

  59. Ortmans I, Elias B, Kelly JM, Moucheron C, Kirsch-DeMesmaeker A (2004) Dalton Trans 668–676. doi:10.1039/B313213G

  60. Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) Nucleic Acids Res 13:6017–6034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eftink MR, Ghiron CA (1981) Anal Biochem 114:199–227

    Article  CAS  PubMed  Google Scholar 

  62. Baguley BC, Falkenhaug E-M (1978) Nucleic Acids Res 5:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abdi K, Hadadzadeh H, Salimi M, Simpson J, Khalaji AD (2012) Polyhedron 44:101–112

    Article  CAS  Google Scholar 

  64. Kocak I, Yildiz U, Coban B, Sengul A (2015) J Solid State Electrochem 19:2189–2197

    Article  CAS  Google Scholar 

  65. Janjua NK, Akhter Z, Jabeen F, Iftikhar B (2014) J Korean Chem Soc 58:153–159

    Article  CAS  Google Scholar 

  66. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  67. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  68. Fotouhi L, Fatollahzadeh M, Heravi MM (2012) Int J Electrochem Sci 7:3919–3928

    CAS  Google Scholar 

  69. Noorbakhsh A, Salimi A (2011) Biosens Bioelectron 30:188–196

    Article  CAS  PubMed  Google Scholar 

  70. Shujha S, Shah A, Zia ur R, Muhammad N, Ali S, Qureshi R, Khalid N, Meetsma A (2010) Eur J Med Chem 45:2902–2911

    Article  CAS  PubMed  Google Scholar 

  71. Lu X, Zhang M, Kang J, Wang X, Zhuo L, Liu H (2004) J Inorg Biochem 98:582–588

    Article  CAS  PubMed  Google Scholar 

  72. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochem 31:9319–9324

    Article  CAS  Google Scholar 

  73. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Biochem 32:2573–2584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of TUBITAK with Grant #113S165. We also thank Zehra Safi Oz for the use of her laboratory to make it possible to visualize and photograph the gel electrophoresis results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Coban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coban, B., Tekin, I.O., Sengul, A. et al. DNA studies of newly synthesized heteroleptic platinum(II) complexes [Pt(bpy)(iip)]2+ and [Pt(bpy)(miip)]2+ . J Biol Inorg Chem 21, 163–175 (2016). https://doi.org/10.1007/s00775-015-1317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1317-8

Keywords

Navigation