Skip to main content
Log in

Oxidation of 5′-dGMP, 5′-dGDP, and 5′-dGTP by a platinum(IV) complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We previously reported that a Pt(IV) complex, [PtIV(dach)Cl4] [trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum(IV)] binds to the N7 of 5′-dGMP (deoxyguanosine-5′-monophosphate) at a relatively fast rate and oxidizes it to 8-oxo-5′-dGMP. Here, we further studied the kinetics of the oxidation of 5′-dGMP by the PtIV complex. The electron transfer rate constants between 5′-dGMP and PtIV in [H8-5′-dGMP–PtIV] and [D8-5′-dGMP–PtIV] were similar, giving a small value of the kinetic isotope effect (KIE: 1.2 ± 0.2). This small KIE indicates that the deprotonation of H8 in [H8-5′-dGMP–PtIV] is not involved in the rate-determining step in the electron transfer between guanine (G) and PtIV. We also studied the reaction of 5′-dGDP (deoxyguanosine-5′-diphosphate) and 5′-dGTP (deoxyguanosine-5′-triphosphate) with the PtIV complex. Our results showed that [PtIV(dach)Cl4] oxidized 5′-dGDP and 5′-dGTP to 8-oxo-5′-dGDP and 8-oxo-5′-dGTP, respectively, by the same mechanism and kinetics as for 5′-dGMP. The PtIV complex binds to N7 followed by a two-electron inner sphere electron transfer from G to PtIV. The reaction was catalyzed by PtII and occurred faster at higher pH. The electron transfer was initiated by either an intramolecular nucleophilic attack by any of the phosphate groups or an intermolecular nucleophilic attack by free OH in the solution. The rates of reactions for the three nucleotides followed the order: 5′-dGMP > 5′-dGDP > 5′-dGTP, indicating that the bulkier the phosphate groups are, the slower the reaction is, due to the larger steric hindrance and rotational barrier of the phosphate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Schumacker PT (2015) Cancer Cell 27:156–157

    Article  PubMed  CAS  Google Scholar 

  2. Klaunig JE, Kamendulis LM, Hocevar BA (2009) Toxicol Pathol 38:96–109

    Article  PubMed  CAS  Google Scholar 

  3. Balaban RS, Nemoto S, Finkel T (2005) Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  4. Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P (2009) Ageing Res Rev 8:285–305

    Article  PubMed  CAS  Google Scholar 

  5. Abdel Moneim AE (2015) Curr Alzheimer Res 12: 335-349

  6. Aslan M, Ozben T (2004) Curr Alzheimer Res 1:111–119

    Article  PubMed  CAS  Google Scholar 

  7. Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

  8. Muller JG, Kayser LA, Paikoff SJ, Duarte V, Tang N, Perez RJ, Rotica SE, Burrows CJ (1999) Coord Chem Rev 185–186:761–774

    Article  Google Scholar 

  9. Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151

    Article  PubMed  CAS  Google Scholar 

  10. Clarke MJ, Morrissey PE (1984) Inorg Chim Acta 80:L69–70

    Article  Google Scholar 

  11. Gariepy KC, Curtin MA, Clarke MJ (1989) J Am Chem Soc 111:4947–4952

    Article  CAS  Google Scholar 

  12. Rodriguez-Bailey VM, LaChance-Galang KJ, Doan PE, Clarke MJ (1997) Inorg Chem 36:1873–1883

    Article  PubMed  CAS  Google Scholar 

  13. Choi S, Cooley RB, Voutchkova A, Leung CH, Vastag L, Knowles DE (2005) J Am Chem Soc 127:1773–1781

    Article  PubMed  CAS  Google Scholar 

  14. Choi S, Cooley RB, Hakemian AS, Larrabee YC, Bunt RC, Maupaus SD, Muller JG, Burrows CJ (2004) J Am Chem Soc 126:591–598

    Article  PubMed  CAS  Google Scholar 

  15. Choi S, Personick ML, Bogart JA, Ryu DW, Redman RM, Laryea-Walker E (2011) Dalton Trans 40:2888–2897. doi:10.1039/c0dt00822b

    Article  PubMed  CAS  Google Scholar 

  16. Choi S, Ryu DW, DellaRocca JG, Wolf MW, Bogart JA (2011) Inorg Chem 50:6567–6574. doi:10.1021/ic2003518

    Article  PubMed  CAS  Google Scholar 

  17. Wolf MW, Choi S (2012) J Biol Inorg Chem 17:1283–1291. doi:10.1007/s00775-012-0942-8

    Article  PubMed  CAS  Google Scholar 

  18. Noszal B, Scheller-Krattiger V, Martin RB (1982) J Am Chem Soc 104:1078–1081

    Article  CAS  Google Scholar 

  19. Ariafard A, Tabatabaie ES, Aghmasheh S, Najaflo S, Yates B (2012) Inorg Chem 51:8002–8013. doi:10.1021/ic300038m

    Article  PubMed  CAS  Google Scholar 

  20. Chang R The chemical educator, vol. 2, No. 3: Springer: New York, 1997; pp 1–3

  21. Choi S, Vastag L, Leung CH, Beard AM, Knowles DE, Larrabee JA (2006) Inorg Chem 45:10108–10114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Nakabeppu Y, Tsuchimoto D, Furuichi M, Sakumi K (2004) Free Radic Res 38:423–428

    Article  PubMed  CAS  Google Scholar 

  23. Schweizer MP, Chan SI, Helmkamp GK, Ts’O POP (1964) J Am Chem Soc 86:696–700

    Article  CAS  Google Scholar 

  24. Kuzmic P (1996) Anal Biochem 237:260–273

    Article  PubMed  CAS  Google Scholar 

  25. Reily MD, Hambley TW, Marzilli LG (1988) J Am Chem Soc 110:2999–3006

    Article  CAS  Google Scholar 

  26. Bose RN, Fonkeng BS, Moghaddas S, Stroup D (1998) Nucleic Acids Res 26:1588–1596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Robitaille PML, Robitaille PA, Brown GG, Brown GG Jr (1991) J Magn Reson 92:73–84

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation (CHE-08480720). The mass spectrometer used in this study was purchased with funds from the NSF (CHE-0520708). IK, SMFC, and GJKB are grateful to the Easton, Gleason, and DeWitt families, respectively, for their summer research funds at Middlebury College. We thank Mr. Bruce O’Rourke (MS) of the Department of Chemistry Mass Spectrometry Facility at the University of Vermont for confirming our ESI–MS/MS spectral results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunhee Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipouros, I., Fica-Contreras, S.M., Bowe, G.J.K. et al. Oxidation of 5′-dGMP, 5′-dGDP, and 5′-dGTP by a platinum(IV) complex. J Biol Inorg Chem 20, 1327–1341 (2015). https://doi.org/10.1007/s00775-015-1312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1312-0

Keywords

Navigation