Skip to main content
Log in

Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two bismuth(III) porphyrins—5,10,15,20-tetrakis(phenyl)porphyrinatobismuth(III) nitrate, [Bi(III)(TPP)]NO3, and the unprecedent 5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatobismuth(III) nitrate, [Bi(III)(T4CMPP)]NO3, and two unprecedented antimony(V) porphyrins dichlorido(5,10,15,20-tetrakis(phenyl)porphyrinato)antimony(V) bromide, [Sb(V)(TPP)Cl2]Br, and dibromido(5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinato)antimony(V) bromide, [Sb(V)(T4CMPP)Br2]Br,—were synthesized by reacting the corresponding porphyrin ligand with Bi(NO3)3·5H2O or SbCl3. All compounds were characterized by UV–vis, 1H NMR spectroscopy, and mass spectrometry. The new compounds were also characterized by elemental analysis. Because antimony and bismuth compounds have been widely applied in medicine, the activity of these complexes was tested against Sb-sensitive and -resistant Leishmania amazonensis parasites. [Sb(V)(T4CMPP)Br2]Br was more active against the promastigote form of Sb-resistant mutant strain as compared to the sensitive parental strain, with IC50 in the micromolar range. These data contrasted with those obtained using the Sb(III) drug potassium antimony tartrate, which displayed IC50 of 110 μmol L−1 against the Sb-sensitive parasite and was almost inactive against the Sb-resistant strain. The H2T4CMPP ligand also showed antileishmanial activity against Sb-resistant and -sensitive strains, but with IC50 at least tenfold greater than that of the complex. The Sb(V)-porphyrin complex was also active against intracellular amastigotes and showed a higher selectivity index than the conventional Sb(V) drug glucantime, in both Sb-sensitive and -resistant strains. The greater antileishmanial activity of this complex could be attributed to an increased cellular uptake of Sb. Thus, [Sb(V)(T4CMPP)Br2]Br constitutes a new antileishmanial drug candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

αMEM:

Minimum essential culture medium

BALB/c:

Albino mice

BSS:

Bismuth subsalicylate

CBS:

Bismuth subcitrate

DMF:

N,N-dimethylformamide

FBS:

Fetal calf serum

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline

Phen:

1,10-Phenanthroline

RPMI:

Roswell Park Memorial Institute (cell culture medium)

TMS:

Tetramethylsilane

TA:

Potassium antimony(III) tartrate

[Bi(III)(TPP)]NO3 :

5,10,15,20-Tetrakis(phenyl)porphyrinatobismuth(III) nitrate

[Bi(III)(T4CMPP)]NO3 :

5,10,15,20-Tetrakis(4-carbomethoxyphenyl)porphyrinatobismuth(III) nitrate

[Sb(V)(TPP)Cl2]Br:

Dichlorido(5,10,15,20-tetrakis(phenyl)porphyrinato)antimony(V) bromide

[Sb(V)(T4CMPP)Br2]Br:

Dibromido(5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinato)antimony(V) bromide

References

  1. Barbour T, Belcher WJ, Brothers PJ, Rickard CEF, Ware DC (1992) Inorg Chem 31:746–754

    Article  CAS  Google Scholar 

  2. Michaudet L, Fasseur D, Guilard R, OU Z, Kadish KM, Dahaoiu S, Lecomte C (2000) J Porphyrins Phthalocyanines 4:261–270

    Article  CAS  Google Scholar 

  3. Treibs A (1969) Justus Liebigs Ann Chem 728:115–148

    Article  CAS  PubMed  Google Scholar 

  4. Buchler JW, Lay KL (1974) Inorg Nucl Chem Lett 10:297

    Article  CAS  Google Scholar 

  5. Halime Z, Michaudet L, Razavet M, Ruzié C, Boitrel B (2003) Dalton Trans 4250–4254

  6. Boitrel B, Breede M, Brothers PJ, Hodgson M, Michaudet L, Rickard CEF, Salim NA (2003) Dalton Trans 9:1803–1807

    Article  Google Scholar 

  7. Balasanthiran V, Chisholm MH (2014) Angew Chem Int Ed 53:1594–1597

    Article  CAS  Google Scholar 

  8. Salvador JAR, Pinto RMA, Silvestre SM (2009) Curr Org Synth 6:426–470

    Article  CAS  Google Scholar 

  9. Bharti SK, Singh SK (2009) Pharm Lett 1:39–51

    CAS  Google Scholar 

  10. Frézard F, Demicheli C, Ribeiro RR (2009) Molecules 14:2317–2336

    Article  PubMed  Google Scholar 

  11. Modabber F (1993) Leishmaniasis. In: Tropical Disease Research. Progress 1991–92. UNDP/World Bank/WHO Special Programme For Research And Training In Tropical Diseases. Geneva: World Health Organization, 77

  12. Goodwin LC, Page JE (1943) Biochem J 22:236–240

    Google Scholar 

  13. Miekeley N, Mortari SR, Schubach AO (2002) Anal Bioanal Chem 372:495–502

    Article  CAS  PubMed  Google Scholar 

  14. Frézard F, Demicheli C, Ferreira CS, Costa MAP (2001) Antimicrob Agents Chemother 45:913–916

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ferreira CS, Martins PS, Demicheli C, Brochu C, Ouellette M, Frezard F (2003) Biometals 16:441–446

    Article  CAS  Google Scholar 

  16. Yan S, Li F, Ding K, Sun H (2003) J Biol Inorg Chem 8:689–697

    Article  CAS  PubMed  Google Scholar 

  17. Denton H, McGregor JC, Coombs GH (2004) Biochem J 381:405–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R (2004) J Biol Chem 279:37445–37451

    Article  CAS  PubMed  Google Scholar 

  19. Demicheli C, Frezard F, Mangrum JB, Farrell NP (2008) Chem Commun 30:4828–4830

    Article  Google Scholar 

  20. Demicheli C, Frézard F, Lecouvey M (2002) Garnier-Suillerot. Biochim Biophys Acta 1570:192–198

    Article  CAS  PubMed  Google Scholar 

  21. Rebouças JS, Spasojevic I, Batinic-Haberle I (2008) J Biol Inorg Chem 13:289–302

    Article  PubMed  Google Scholar 

  22. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  23. Monte-Neto RL, Coelho AC, Raymond F, Légaré D, Corbeil J, Frézard F, Ouellette M (2011) PLoS Neglected Trop Dis 5:e1167

    Article  Google Scholar 

  24. Lizarazo-Jaimes EH, Monte-Neto RL, Reis PG, Fernandes NL, Speziali MN, Melo MN, Frézard F, Demicheli C (2012) Molecules 17:12622–12635

    Article  CAS  PubMed  Google Scholar 

  25. Moreira D, Neto RLM, Andrade JM, Santi AMM, Reis PG, Frézard F, Murta SMF (2013) Int J Parasitol Drugs Drug Resist 3:143–153

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kadish KM, Smith KM, Guilard R (2000) The porphyrin handbook: inorganic, organometallic and coordination chemistry, vol 3. Elsevier, p 40

  27. Knor G (1994) Vogler. Inorg Chem 33:314–318

    Article  Google Scholar 

  28. Vogel AI (1981) Química analítica qualitativa. São Paulo, Mestre Jou, p 359

    Google Scholar 

  29. Marzochi MC, Marzochi KB (1994) Cad Saude Publica 10:359–375

    Article  PubMed  Google Scholar 

  30. Frézard F, Demicheli C (2010) Expert Opin Drug Deliv 7:1343–1358

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CNPq, CAPES, and FAPEMIG for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ynara Marina Idemori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, M.L., DeFreitas-Silva, G., dos Reis, P.G. et al. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite. J Biol Inorg Chem 20, 771–779 (2015). https://doi.org/10.1007/s00775-015-1264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1264-4

Keywords

Navigation