Skip to main content
Log in

Structural characterization and antileishmanial activity of newly synthesized organo-bismuth(V) carboxylates: experimental and molecular docking studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In a quest to discover new formulations for the treatment of various parasitic diseases, a series of heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR′)2], where R=C6H5 for 14 and p-CH3C6H4 for 58, were synthesized, characterized and evaluated for their biological potential against L. tropica. All the synthesized complexes were fully characterized by elemental analysis, FT-IR, multinuclear (1H and 13C) NMR spectroscopy and X-ray crystallography. The crystal structures for [BiPh3(O2CC6H4(o-Br))2] (1), [BiPh3(O2CC2H2C6H4)2] (2), [BiPh3(O2CC6H4(m-NO2))2] (3) and [BiPh3(O2CC6H4(2-OH,3-CH3))2] (4) were determined and found to have a distorted pentagonal bipyramidal molecular geometry with seven coordinated bismuth center for 1–3 and for 4 distorted octahedral geometry, respectively. All the synthesized complexes demonstrated a moderate to significant activity against leishmania parasites. A broad analytical approach was followed to testify the stability for (18) in solid state as well as in solution and in leishmanial culture M199, ensuring them to be stable enough to exert a significant antileishmanial effect with promising results. Cytotoxicity profile suggests that tris(tolyl) derivatives show lower toxicity against isolated lymphocytes with higher antileishmanial potential. Molecular docking studies were carried out to reveal the binding modes for (18) targeting the active site of trypanothione reductase (TR) (PDB ID: 4APN) and Trypanothione Synthetase-Amidase structure (PDB ID 2vob).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GOLD:

Genetic optimization for ligand docking

PBS:

Phosphate-buffered saline

CDCl3 :

Deuterated chloroform

IC50 :

The half maximal inhibition concentration

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. Keogan DM, Griffith DM (2014) Current and potential applications of bismuth-based drugs. Molecules 19:15258–15297

    PubMed  PubMed Central  Google Scholar 

  2. Krynetskaia NF, Krynetski EY (2000) Elucidating the targets of antileukemic agents : molecular mechanisms of mercaptopurine action. Mol Biol 34:895–901

    CAS  Google Scholar 

  3. Mulla H, Buck H, Price L et al (2015) “Acceptability” of a new oral suspension formulation of mercaptopurine in children with acute lymphoblastic leukaemia. J Oncol Pharm Pract 22:387–395

    PubMed  Google Scholar 

  4. Yang Y, Zhou S, Ouyang R, Yang Y (2016) Improvement in the anticancer activity of 6- mercaptopurine via combination with bismuth (III). Chem Pharm Bull 64(64):1539–1545

    CAS  Google Scholar 

  5. Nielsen OH, Vainer B, Rask-Madsen J (2001) Review article: the treatment of inflammatory bowel disease with 6-mercaptopurine or azathioprine. Aliment Pharmacol Ther 15:1699–1708

    CAS  PubMed  Google Scholar 

  6. Li MX, Yang M, Niu JY et al (2012) A nine-coordinated bismuth(III) complex derived from pentadentate 2,6-diacetylpyridine bis(4N-methylthiosemicarbazone): crystal structure and both in vitro and in vivo biological evaluation. Inorg Chem 51:12521–12526

    CAS  PubMed  Google Scholar 

  7. Li M, Lu Y, Yang M et al (2012) One dodecahedral bismuth(III) complex derived from 2-acetylpyridine N(4)-pyridylthiosemicarbazone: synthesis, crystal structure and biological evaluation. Dalton Trans 41:12882–12887

    CAS  PubMed  Google Scholar 

  8. Ong YC, Blair VL, Kedzierski L et al (2015) Stability and toxicity of tris-tolyl bismuth(v) dicarboxylates and their biological activity towards Leishmania major. Dalton Trans 44:18215–18226

    CAS  PubMed  Google Scholar 

  9. Treiber G, Malferthertheiner P, Klotz U (2007) Treatment and dosing of Helicobacter pylori infection: when pharmacology meets clinic. Expert Opin Pharmacother 8:329–350

    CAS  PubMed  Google Scholar 

  10. Griffith DM, Li H, Werrett MV, Andrews PC, Sun H (2021) Medicinal chem and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 50:12037–12069

    CAS  PubMed  Google Scholar 

  11. Cui L, Bi C, Fan Y et al (2015) Synthesis, crystal structures, DNA interaction and anticancer activity of organobismuth(V) complexes. Inorg Chim Acta 437:41–46

    CAS  Google Scholar 

  12. Thirumurugan A, Li W, Cheetham AK (2012) Bismuth 2,6-pyridinedicarboxylates: assembly of molecular units into coordination polymers, CO2 sorption and photoluminescence. Dalton Trans 41:4126–4134

    CAS  PubMed  Google Scholar 

  13. Du H, Wang C, Li Y et al (2015) A supramolecular metal-organic framework derived from bismuth iodide and 4,4′-bipyridinium derivative: synthesis, structure and efficient adsorption of dyes. Microporous Mesoporous Mater 214:136–142

    CAS  Google Scholar 

  14. Wang G, Liu Y, Huang B et al (2015) A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Trans 44:16238–16241

    CAS  PubMed  Google Scholar 

  15. Li YL, Hua JA, Zhao Y et al (2015) Metal-organic frameworks with 1,3,5-tris(1-imidazolyl)benzene and dicarboxylate ligands: synthesis, anion exchange and gas adsorption. Microporous Mesoporous Mater 214:188–194

    CAS  Google Scholar 

  16. Irshad AM, Rauf MK, Badshah A et al (2013) Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds. Dalton Trans 42:16733–16741

    Google Scholar 

  17. Andleeb S, Imtiaz-ud-Din RMK, Azam SS, Haq I, Tahir MN, Ahmad S (2019) Bioactive heteroleptic bismuth(V) complexes: synthesis, structural analysis and binding pattern validation. Appl Organomet Chem 33:1–13

    Google Scholar 

  18. Andleeb S, Imtiaz-ud-Din (2019) Recent progress in designing the synthetic strategies for bismuth based complexes. J Organomet Chem 898:120871

    CAS  Google Scholar 

  19. Andleeb S, Rauf MK, Azam SS, Badshah A, Sadaf H, Raheel A, Tahir MN, Raza S (2016) A one-pot multicomponent facile synthesis of dihydropyrimidin-2(1: H)-thione derivatives using triphenylgermane as a catalyst and its binding pattern validation. RSC Adv 6:79651–79661

    CAS  Google Scholar 

  20. Andleeb S, Donaldson SL, Schipper DE, Fernandez IIL, Imtiaz-ud-Din WKH (2017) Anionic bismuth oxido clusters with pendant silver cations: synthesis and structures of [Bi4(µ3-O)2(TFA)9Ag(tol)2]2 and {Bi4(µ3-O)2(TFA)10(AgPPh3)2}n. Eur J Inorg Chem 2017:1457–1463

    CAS  Google Scholar 

  21. Fernandez IIL, Donaldson SL, Schipper DE, Andleeb S, Whitmire KH (2016) Anionic bismuth-oxido carboxylate clusters with transition metal countercations. Inorg Chem 55:11560–11569

    Google Scholar 

  22. Avcı D, Altürk S, Sönmez F et al (2019) A novel series of mixed-ligand M(II) complexes containing 2,2′-bipyridyl as potent α-glucosidase inhibitor: synthesis, crystal structure, DFT calculations, and molecular docking. J Biol Inorg Chem 24:747–764

    PubMed  Google Scholar 

  23. Hassan LR, Anouar EH, Bahron H et al (2020) Cytotoxicity, alpha-glucosidase inhibition and molecular docking studies of hydroxamic acid chromium(III) complexes. J Biol Inorg Chem 25:239–252

    CAS  PubMed  Google Scholar 

  24. Sahu N, Mondal S, Sepay N et al (2017) Antibacterial activities of sulfamethoxazolyl-azo-phenols and their Cu(II) complexes along with molecular docking properties. J Biol Inorg Chem 22:833–850

    CAS  PubMed  Google Scholar 

  25. Nuth M, Cowan JA (2009) Iron-sulfur cluster biosynthesis: characterization of IscU-IscS complex formation and a structural model for sulfide delivery to the [2Fe-2S] assembly site. J Biol Inorg Chem 14:829–839

    CAS  PubMed  Google Scholar 

  26. Radisavljević S, Ćoćić D, Jovanović S et al (2019) Synthesis, characterization, DFT study, DNA/BSA-binding affinity, and cytotoxicity of some dinuclear and trinuclear gold(III) complexes. J Biol Inorg Chem 24:1057–1076

    PubMed  Google Scholar 

  27. Mazzei L, Dobrovolska O, Musiani F et al (2015) On the interaction of Helicobacter pylori NikR, a Ni(II)-responsive transcription factor, with the urease operator: In solution and in silico studies. J Biol Inorg Chem 20:1021–1037

    CAS  PubMed  Google Scholar 

  28. Palepu NR, Nongbri SL, Premkumar JR et al (2015) Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru(II), Rh(III) and Ir(III) as in vitro antitumor, antibacterial and fluorescence imaging agents. J Biol Inorg Chem 20:619–638

    CAS  PubMed  Google Scholar 

  29. Alexander C, Nithyakumar A, Paul MWB, Arockia Samy N (2018) Platinum(II) complexes of imidazophenanthroline-based polypyridine ligands as potential anticancer agents: synthesis, characterization, in vitro cytotoxicity studies and a comparative ab initio, and DFT studies with cisplatin, carboplatin, and oxaliplatin. J Biol Inorg Chem 23:833–848

    CAS  PubMed  Google Scholar 

  30. Haribabu J, Jeyalakshmi K, Arun Y et al (2017) Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications. J Biol Inorg Chem 22:461–480

    CAS  PubMed  Google Scholar 

  31. Ramezani N, Eslami Moghadam M, Behzad M (2021) Investigating the anticancer properties of the two new platinum complexes with iso- and tert-pentylglycine by the DFT, molecular docking, and ADMET assessment and experimental confirmations. J Biol Inorg Chem 26:283–296

    CAS  PubMed  Google Scholar 

  32. Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8:312–328

    CAS  PubMed  Google Scholar 

  33. Armarego WLF, Perrin DD (1997) Purification of laboratory chemicals. Molecules 2:152

    Google Scholar 

  34. Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals. Butterworth-Heinemann, London

    Google Scholar 

  35. Andrews PC, Junk PC, Kedzierski L, Peiris RM (2013) Anti-leishmanial activity of novel homo- and heteroleptic bismuth(iii) thiocarboxylates. Aust J Chem 66:1297–1305

    CAS  Google Scholar 

  36. Sheldrick GM (2015) SHELXL-2014/7. Acta Cryst C71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  37. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 32:837–838

    CAS  Google Scholar 

  38. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457

    CAS  Google Scholar 

  39. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    CAS  PubMed  Google Scholar 

  40. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  41. Luscombe NM, Laskowski RA, Thornton JM (1997) LIGPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res 8:127–134

    Google Scholar 

  42. Dassault Systems BIOVIA (2016) Discovery Studio Visualizer, San Diego, CA, USA

  43. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  Google Scholar 

  44. Ahmed M, Fatima H, Qasim M et al (2017) Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complement Altern Med 17:1–16

    Google Scholar 

  45. Stewart CC, Cramer SF, Steward PG (1975) The response of human peripheral blood lymphocytes to phytohemagglutinin: determination of cell numbers. Cell Immunol 16:237–250

    CAS  PubMed  Google Scholar 

  46. Andrews PC, Deacon GB, Junk PC et al (2006) Synthetic and structural comparisons of bismuth(III) carboxylates synthesised under solvent-free and reflux conditions. Dalton Trans. https://doi.org/10.1039/b605002f

    Article  PubMed  Google Scholar 

  47. Yang Y, Ouyang R, Xu L et al (2015) Review: bismuth complexes: synthesis and applications in biomedicine. J Coord Chem 68:379–397

    CAS  Google Scholar 

  48. Rizvi I, Singh A (2015) Tris(pentafluorophenyl)bismuth(V)carboxylates and cyclobismuthates. Int J Sci Eng Res 6:562–568

    Google Scholar 

  49. Ong YC, Blair VL, Kedzierski L, Andrews PC (2014) Stability and toxicity of heteroleptic organometallic Bi(v) complexes towards Leishmania major. Dalton Trans 43:12904–12916

    CAS  PubMed  Google Scholar 

  50. Sharutin VV, Sharutina OK, Senchurin VS (2013) Synthesis and structure of Tri-m-Tolylbismuth dicarboxylates. Russ J Inorg Chem 58:1470–1474

    CAS  Google Scholar 

  51. Luqman A, Blair VL, Brammananth R et al (2014) Homo- and heteroleptic bismuth(III/V) thiolates from N-heterocyclic thiones: synthesis, structure and anti-microbial activity. Chem - A Eur J 20:14362–14377

    CAS  Google Scholar 

  52. Imtiaz-ud-Din., Mazhar M, Khan KM et al (2004) Studies of bimetallic carboxylates: their synthesis, characterization, biological activity and X-ray structure. J Organomet Chem 689:899–908

    CAS  Google Scholar 

  53. Raheel A, Imtiaz-ud-Din., Andleeb S, Ramadan S, Tahir MN (2016) Synthesis and structural characterization of new bioactive ligands and their Bi ( III ) derivatives. Appl Organometal Chem 31:55

    Google Scholar 

  54. Lucas X, Bauzá A, Frontera A, Quiñonero D (2016) A thorough anion-π interaction study in biomolecules: on the importance of cooperativity effects. Chem Sci 7:1038–1050

    CAS  PubMed  Google Scholar 

  55. Batsanov SS (1991) The atomic radii of the elements. Russ J Inorg Chem A 36:1694–1706

    Google Scholar 

  56. Chem D, Dittes U, Keppler DDDBK, Nuber DB (1996) Synthesis and structure of seven-coordinate bismuth(v) complexes with benzenoid and non-benzenoid arene ligands: tri(aryl)tropolonatobismuth(v) complexes. Angen Chem 35:67–68

    Google Scholar 

  57. Sharutin VV, Sharutina OK (2014) Synthesis and structure of triphenylbismuth bis(pentachlorobenzoate). Russ J Inorg Chem 59:558–560

    CAS  Google Scholar 

  58. Giese M, Albrecht M, Rissanen K (2016) Experimental investigation of anion-π interactions: applications and biochemical relevance. Chem Commun 52:1778–1795

    CAS  Google Scholar 

  59. Estarellas C, Frontera A, Quiñonero D, Deyã PM (2011) Relevant anion-π interactions in biological systems: the case of urate oxidase. Angew Chemie Int Ed 50:415–418

    CAS  Google Scholar 

  60. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Anion-π interactions in flavoproteins. Chem Asian J 6:2316–2318

    CAS  PubMed  Google Scholar 

  61. Chawla M, Chermak E, Zhang Q et al (2017) Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res 45:11019–11032

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Egli M, Sarkhel S (2007) Lone pair-aromatic interactions: to stabilize or not to stabilize. Acc Chem Res 40:197–205

    CAS  PubMed  Google Scholar 

  63. Hall DR, Jehle S, Luo L et al (2015) Correction for Kozakov et al., ligand deconstruction: Why some fragment binding positions are conserved and others are not. Proc Natl Acad Sci 112:E3749–E3749

    Google Scholar 

  64. Duffin RN, Blair VL, Kedzierski L, Andrews PC (2018) Comparative stability, toxicity and anti-leishmanial activity of triphenyl antimony(v) and bismuth(v) α-hydroxy carboxylato complexes. Dalton Trans 47:971–980

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Fatima Jinnah Women university and Higher Education Commission of Pakistan for the grant of funds for the project: No:21- 2465/SRGP/R&D/HEC/2019.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed as per their expertise and agree to publish the version of the manuscript.

Corresponding authors

Correspondence to Sohaila Andleeb or Imtiaz-ud-Din.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

775_2021_1919_MOESM1_ESM.pdf

Supplementary file1 Supporting information summary CCDC 1432780 for (1), 1411992 (2), 1832580 (3) and 1832583(4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_ request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. (PDF 3463 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andleeb, S., Imtiaz-ud-Din, Rauf, M.K. et al. Structural characterization and antileishmanial activity of newly synthesized organo-bismuth(V) carboxylates: experimental and molecular docking studies. J Biol Inorg Chem 27, 175–187 (2022). https://doi.org/10.1007/s00775-021-01919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01919-y

Keywords

Navigation