Skip to main content

Advertisement

Log in

Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A shotgun proteomic approach was applied to characterize the selenium (Se)-containing proteins of the selenium hyperaccumulator monkeypot nut (Lecythis minor) seeds. The exceptionally high Se content (>4,000 mg kg−1) of the sample enabled a straightforward procedure without the need for multiple preconcentration and fractionation steps. The proteins identified were sulfur-rich seed proteins, namely, 11S globulin (Q84ND2), 2S albumin (B6EU54), 2S sulfur-rich seed storage proteins (P04403 and P0C8Y8) and a 11S globulin-like protein (A0EM48). Database directed search for theoretically selenium-containing peptides was assisted by manual spectra evaluation to achieve around 25 % coverage on sulfur analogues. Remarkable detoxification mechanisms on the proteome level were revealed in the form of multiple selenomethionine–methionine substitution and the lack of selenocysteine residues. The degree of selenomethionine substitution could be characterized by an exponential function that implies the inhibition of protein elongation by selenomethionine. Our results contribute to the deeper understanding of selenium detoxification procedures in hyperaccumulator plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McConnell KP (1963) Metabolism of selenium in the mammalian organism. J Agric Food Chem 11:385–388. doi:10.1021/jf60129a011

    Article  Google Scholar 

  2. Schroeder HA, Frost DV, Balassa JJ (1970) Essential trace metals in man: Selenium. J Chronic Dis 23:227–243. doi:10.1016/0021-9681(70)90003-2

    Article  CAS  PubMed  Google Scholar 

  3. Stadtman TC (1974) Selenium biochemistry. Science 183:915–922. doi:10.2307/1737886

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton EE, Wilker JJ (2004) Inhibition of DNA alkylation damage with inorganic salts. J Biol Inorg Chem 9:894–902. doi:10.1007/s00775-004-0597-1

    Article  CAS  PubMed  Google Scholar 

  5. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432

    Article  CAS  Google Scholar 

  6. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12. doi:10.1007/s00775-005-0056-7

    Article  CAS  PubMed  Google Scholar 

  7. Freeman JL, Zhang LH, Marcus MA et al (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134. doi:10.1104/pp.106.081158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Quinn CF, Prins CN, Freeman JL et al (2011) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737. doi:10.1111/j.1469-8137.2011.03832.x

    Article  CAS  PubMed  Google Scholar 

  9. Vonderheide AP, Wrobel K, Kannamkumarath SS et al (2002) Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. J Agric Food Chem 50:5722–5728. doi:10.1021/jf0256541

    Article  CAS  PubMed  Google Scholar 

  10. Dernovics M, García-Barrera T, Bierla K et al (2007) Standardless identification of selenocystathionine and its γ-glutamyl derivatives in monkeypot nuts by 3D liquid chromatography with ICP-MS detection followed by nanoHPLC-Q-TOF–MS/MS. Analyst 132:439–449. doi:10.1039/b618637h

    Article  CAS  PubMed  Google Scholar 

  11. Ferri T, Coccioli F, De Luca C et al (2004) Distribution and speciation of selenium in Lecythis ollaria plant. Microchem J 78:195–203. doi:10.1016/j.microc.2004.06.001

    Article  CAS  Google Scholar 

  12. Jayasinghe SB, Caruso JA (2011) Investigation of Se-containing proteins in Bertholletia excelsa H.B.K. (Brazil nuts) by ICPMS, MALDI-MS and LC-ESI-MS methods. Int J Mass Spectrom 307:16–27. doi:10.1016/j.ijms.2010.12.005

    Article  CAS  Google Scholar 

  13. Moreno FJ, Jenkins JA, Mellon FA et al (2004) Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochim Biophys Acta Proteins Proteomics 1698:175–186. doi:10.1016/j.bbapap.2003.11.007

    Article  CAS  Google Scholar 

  14. Zuo W-N, Sun SSM (1996) Purification and characterization of the methionine-rich 2S seed proteins from the Brazil nut family (Lecythidaceae). J Agric Food Chem 44:1206–1210

    Article  CAS  Google Scholar 

  15. Antunes AJ, Markakis P (1977) Protein supplementation of navy beans with Brazil nuts. J Agric Food Chem 25:1096–1098

    Article  CAS  PubMed  Google Scholar 

  16. Sun SS, Altenbach SB, Leung FW (1987) Properties, biosynthesis and processing of a sulfur-rich protein in Brazil nut (Bertholletia excelsa H.B.K.). Eur J Biochem 162:477–483

    Article  CAS  PubMed  Google Scholar 

  17. Bianga J, Govasmark E, Szpunar J (2013) Characterization of selenium incorporation into wheat proteins by two-dimensional gel electrophoresis-laser ablation ICP MS followed by capillary HPLC-ICP MS and electrospray linear trap quadrupole orbitrap MS. Anal Chem 85:2037–2043

    Article  CAS  PubMed  Google Scholar 

  18. Fang Y, Catron B, Zhang Y et al (2010) Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction. J Agric Food Chem 58:9731–9738. doi:10.1021/jf100934p

    Article  CAS  PubMed  Google Scholar 

  19. Wolf WR, Zainal H, Yager B (2001) Selenomethionine content of candidate reference materials. Anal Bioanal Chem 370:286–290

    Article  CAS  Google Scholar 

  20. Böck A, Forchhammer K, Heider J, Baron C (1991) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467

    Article  PubMed  Google Scholar 

  21. Encinar JR, Ouerdane L, Buchmann W et al (2003) Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal Chem 75:3765–3774. doi:10.1021/ac034103m

    Article  PubMed  Google Scholar 

  22. Böck A, Flohé L, Köhrle J (2007) Selenoproteins—biochemistry and clinical relevance. Biol Chem 388:985–986. doi:10.1515/BC.2007.148

    Article  PubMed  Google Scholar 

  23. Kitajima T, Jigami Y, Chiba Y (2012) Cytotoxic mechanism of selenomethionine in yeast. J Biol Chem 287:10032–10038. doi:10.1074/jbc.M111.324244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta Gen Subj 1790:1424–1428. doi:10.1016/j.bbagen.2009.05.014

    Article  CAS  Google Scholar 

  25. Eustice DC, Kull FJ, Shrift A (1981) Selenium toxicity: aminoacylation and peptide bond formation with selenomethionine. Plant Physiol 67:1054–1058. doi:10.1104/pp.67.5.1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Müller S, Senn H, Gsell B et al (1994) The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterization of (Se)2-thioredoxin. Biochemistry (Mosc) 33:3404–3412

    Article  Google Scholar 

  27. Hallenbeck PC, George GN, Prince RC, Thorneley RNF (2009) Characterization of a modified nitrogenase Fe protein from Klebsiella pneumoniae in which the 4Fe4S cluster has been replaced by a 4Fe4Se cluster. J Biol Inorg Chem 14:673–682. doi:10.1007/s00775-009-0480-1

    Article  CAS  PubMed  Google Scholar 

  28. Cheajesadagul P, Bianga J, Arnaudguilhem C et al (2014) Large-scale speciation of selenium in rice proteins using ICP-MS assisted electrospray MS/MS proteomics. Metallomics 6:646–653. doi:10.1039/c3mt00299c

    Article  CAS  PubMed  Google Scholar 

  29. Chan Q, Afton SE, Caruso JA (2010) Investigation of selenium metabolites in Se-enriched kale, Brassica oleracea A, via HPLC-ICPMS and nanoESI-ITMS. J Anal At Spectrom 25:186–192. doi:10.1039/B914157J

    Article  CAS  Google Scholar 

  30. Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium by agricultural plants-2. The utilization of various selenium compounds. Plant Soil 32:382–396. doi:10.1007/BF01372878

    Article  CAS  Google Scholar 

  31. Kannamkumarath SS, Wrobel K, Wrobel K et al (2002) HPLC-ICP-MS determination of selenium distribution and speciation in different types of nut. Anal Bioanal Chem 373:454–460. doi:10.1007/s00216-002-1354-3

    Article  CAS  PubMed  Google Scholar 

  32. Bodó ET, Stefánka Z, Ipolyi I et al (2003) Preparation, homogeneity and stability studies of a candidate LRM for Se speciation. Anal Bioanal Chem 377:32–38. doi:10.1007/s00216-003-1941-y

    Article  PubMed  Google Scholar 

  33. Németh A, García Reyes JF, Kosáry J, Dernovics M (2013) The relationship of selenium tolerance and speciation in Lecythidaceae species. Metallomics 5:1663–1673. doi:10.1039/c3mt00140g

    Article  PubMed  Google Scholar 

  34. Ogra Y, Anan Y (2009) Selenometabolomics: identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. J Anal At Spectrom 24:1477–1488. doi:10.1039/b910235c

    Article  CAS  Google Scholar 

  35. Visioli G, Marmiroli N (2013) The proteomics of heavy metal hyperaccumulation by plants. J Proteomics 79:133–145. doi:10.1016/j.jprot.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  36. Dernovics M, Giusti P, Lobinski R (2007) ICP-MS-assisted nanoHPLC-electrospray Q/time-of-flight MS/MS selenopeptide mapping in Brazil nuts. J Anal At Spectrom 22:41–50. doi:10.1039/b608041c

    Article  CAS  Google Scholar 

  37. Kinter M, Sherman NE (2005) Protein sequencing and identification using tandem mass spectrometry. Wiley, USA

    Google Scholar 

  38. Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11:996–999. doi:10.1002/pmic.201000595

    Article  CAS  PubMed  Google Scholar 

  39. Barsnes H, Vaudel M, Colaert N et al (2011) Compomics-utilities: an open-source Java library for computational proteomics. BMC Bioinformatics. doi:10.1186/1471-2105-12-70

    PubMed Central  PubMed  Google Scholar 

  40. McSheehy S, Kelly J, Tessier L, Mester Z (2005) Identification of selenomethionine in selenized yeast using two-dimensional liquid chromatography–mass spectrometry based proteomic analysis. Analyst 130:35–37. doi:10.1039/b414246b

    Article  CAS  PubMed  Google Scholar 

  41. Bierla K, Bianga J, Ouerdane L et al (2013) A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach. J Proteomics 87:26–39. doi:10.1016/j.jprot.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  42. Bianga J, Szpunar J (2013) ICP-MS-assisted identification of selenium-containing proteins in 2D gels using a new capillary HPLC-ICP MS interface and Orbitrap tandem mass spectrometry. J Anal At Spectrom 28:288–292. doi:10.1039/c2ja30273j

    Article  CAS  Google Scholar 

  43. Dernovics M, Vass A, Németh A, Magyar A (2012) Synthesis and application of a Sec2-containing oligopeptide for method evaluation purposes in selenium speciation. Talanta 99:186–193. doi:10.1016/j.talanta.2012.05.038

    Article  CAS  PubMed  Google Scholar 

  44. Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteomics 74:389–400. doi:10.1016/j.jprot.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  45. Giusti P, Schaumlöffel D, Encinar JR, Szpunar J (2005) Interfacing reversed-phase nanoHPLC with ICP-MS and on-line isotope dilution analysis for the accurate quantification of selenium-containing peptides in protein tryptic digests. J Anal At Spectrom 20:1101–1107. doi:10.1039/B506620D

    Article  CAS  Google Scholar 

  46. Burnell JN, Shrift A (1979) Cysteinyl-tRNA synthetase from Astragalus species. Plant Physiol 63:1095–1097. doi:10.1104/pp.63.6.1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiol 67:1051–1053. doi:10.1104/pp.67.5.1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261. doi:10.1016/0968-0004(92)90405-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the TÁMOP 4.2.1./B-09/1/KMR-2010-0005 and the KTIA_AIK_12-1-2012-0024 Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Dernovics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 3363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Németh, A., Dernovics, M. Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds. J Biol Inorg Chem 20, 23–33 (2015). https://doi.org/10.1007/s00775-014-1206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1206-6

Keywords

Navigation