Skip to main content
Log in

The effect of forearm rotation on the bone mineral density measurements of the distal radius

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Forearm dual-energy X-ray absorptiometry (DXA) is often performed in clinics where central DXA is unavailable. Accurate bone mineral density (BMD) measurement is crucial for clinical assessment. Forearm rotation can affect BMD measurements, but this effect remains uncertain. Thus, we aimed to conduct a simulation study using CT images to clarify the effect of forearm rotation on BMD measurements.

Materials and methods

Forearm CT images of 60 women were analyzed. BMD was measured at the total, ultra-distal (UD), mid-distal (MD), and distal 33% radius regions with the radius located at the neutral position using digitally reconstructed radiographs generated from CT images. Then, the rotation was altered from − 30° to 30° (supination set as positive) with a one-degree increment, and the percent BMD changes from the neutral position were quantified for all regions at each angle for each patient.

Results

The maximum mean BMD changes were 5.8%, 7.0%, 6.2%, and 7.2% for the total, UD, MD, and distal 33% radius regions, respectively. The analysis of the absolute values of the percent BMD changes from the neutral position showed that BMD changes of all patients remained within 2% when the rotation was between − 5° and 7° for the total region, between − 3° and 2° for the UD region, between − 4° and 3° for the MD region, and between − 3° and 1° for the distal 33% radius region.

Conclusion

Subtle rotational changes affected the BMD measurement of each region. The results showed the importance of forearm positioning when measuring the distal radius BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soen S, Fukunaga M, Sugimoto T et al (2013) Diagnostic criteria for primary osteoporosis: year 2012 revision. J Bone Miner Metab 31:247–257. https://doi.org/10.1007/s00774-013-0447-8

    Article  PubMed  Google Scholar 

  2. Jain RK, Vokes T (2017) Dual-energy X-ray Absorptiometry. J Clin Densitom 20:291–303. https://doi.org/10.1016/j.jocd.2017.06.014

    Article  PubMed  Google Scholar 

  3. Kanis JA, Cooper C, Rizzoli R et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  PubMed  Google Scholar 

  4. Camacho PM, Petak SM, Binkley N et al (2020) American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2020 Update. Endocr Pract 26:1–46. https://doi.org/10.4158/GL-2020-0524SUPPL

    Article  PubMed  Google Scholar 

  5. Sakuma M, Endo N, Oinuma T et al (2008) Incidence and outcome of osteoporotic fractures in 2004 in Sado City, Niigata Prefecture, Japan. J Bone Miner Metab 26:373–378. https://doi.org/10.1007/s00774-007-0841-1

    Article  PubMed  Google Scholar 

  6. Qutbi M, Salek A, Soltanshahi M et al (2019) The impact of nonstandard hip rotation on densitometric results of hip regions and potential misclassification of diagnosis. Arch Osteoporos 14:86. https://doi.org/10.1007/s11657-019-0635-9

    Article  PubMed  Google Scholar 

  7. Uemura K, Takao M, Otake Y et al (2023) The effect of patient positioning on measurements of bone mineral density of the proximal femur: a simulation study using computed tomographic images. Arch Osteoporos 18:35. https://doi.org/10.1007/s11657-023-01225-x

    Article  PubMed  Google Scholar 

  8. Lewiecki EM, Binkley N, Morgan SL et al (2016) Best practices for dual-energy x-ray absorptiometry measurement and reporting: international society for clinical densitometry guidance. J Clin Densitom 19:127–140. https://doi.org/10.1016/j.jocd.2016.03.003

    Article  PubMed  Google Scholar 

  9. Urushibara N, Kato N, Adachi R et al (2014) Once-weekly teriparatide increases bone mineral density in the distal 1/10 radius, but not in the distal 1/3 radius. Springerplus 3:238. https://doi.org/10.1186/2193-1801-3-238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao J, Xing Y, Zhou Q et al (2010) Can forearm bone mineral density be measured with dxa in the supine position? a study in chinese population. J Clin Densitom 13:147–150. https://doi.org/10.1016/j.jocd.2010.02.001

    Article  PubMed  Google Scholar 

  11. Rosen EO, McNamara EA, Whittaker LG et al (2018) Effect of positioning of the ROI on BMD of the forearm and its subregions. J Clin Densitom 21:529–533. https://doi.org/10.1016/j.jocd.2017.12.005

    Article  PubMed  Google Scholar 

  12. Krueger D, Vallarta-Ast N, Libber J et al (2012) Positioner and clothing artifact can affect one-third radius BMD measurement. J Clin Densitom 15:480. https://doi.org/10.1016/j.jocd.2012.08.005

    Article  Google Scholar 

  13. Wu G, van der Helm FCT, (DirkJan) Veeger HEJ, et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992. https://doi.org/10.1016/j.jbiomech.2004.05.042

    Article  CAS  PubMed  Google Scholar 

  14. Uemura K, Fujimori T, Otake Y et al (2023) Development of a system to assess the two- and three-dimensional bone mineral density of the lumbar vertebrae from clinical quantitative CT images. Arch Osteoporos 18:22. https://doi.org/10.1007/s11657-023-01216-y

    Article  PubMed  Google Scholar 

  15. Uemura K, Otake Y, Takao M et al (2022) Development of an open-source measurement system to assess the areal bone mineral density of the proximal femur from clinical CT images. Arch Osteoporos 17:17. https://doi.org/10.1007/s11657-022-01063-3

    Article  PubMed  Google Scholar 

  16. Otake Y, Armand M, Armiger RS et al (2012) Intraoperative Image-based Multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-Arm tracking and GPU-acceleration. IEEE Trans Med Imaging 31:948–962. https://doi.org/10.1109/TMI.2011.2176555

    Article  PubMed  Google Scholar 

  17. Henzell S, Dhaliwal S, Pontifex R et al (2000) Precision error of fan-beam dual x-ray absorptiometry scans at spine, hip, and forearm. J Clin Densitom 3:359–364. https://doi.org/10.1385/JCD:3:4:359

    Article  CAS  PubMed  Google Scholar 

  18. Chang Y-J, Yu W, Lin Q et al (2012) Forearm bone mineral density measurement with different scanning positions: a study in right-handed chinese using dual-energy X-ray absorptiometry. J Clin Densitom 15:67–71. https://doi.org/10.1016/j.jocd.2011.08.005

    Article  PubMed  Google Scholar 

  19. Yue C, Ding N, Xu L-L et al (2022) Prescreening for osteoporosis with forearm bone densitometry in health examination population. BMC Musculoskelet Disord 23:377. https://doi.org/10.1186/s12891-022-05325-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  21. Ziemlewicz TJ, Maciejewski A, Binkley N et al (2016) Opportunistic quantitative ct bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 adults. J Bone Miner Res 31:1835–1840. https://doi.org/10.1002/jbmr.2856

    Article  CAS  PubMed  Google Scholar 

  22. Engelke K (2017) Quantitative computed tomography—current status and new developments. J Clin Densitom 20:309–321. https://doi.org/10.1016/j.jocd.2017.06.017

    Article  PubMed  Google Scholar 

  23. Uemura K, Otake Y, Takao M et al (2021) Automated segmentation of an intensity calibration phantom in clinical CT images using a convolutional neural network. Int J CARS 16:1855–1864. https://doi.org/10.1007/s11548-021-02345-w

    Article  Google Scholar 

  24. Giambini H, Dragomir-Daescu D, Huddleston PM et al (2015) The effect of quantitative computed tomography acquisition protocols on bone mineral density estimation. J Biomech Eng 137:114502. https://doi.org/10.1115/1.4031572

    Article  PubMed  Google Scholar 

  25. Leder BZ, Tsai JN, Uihlein AV et al (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. The Lancet 386:1147–1155. https://doi.org/10.1016/S0140-6736(15)61120-5

    Article  CAS  Google Scholar 

  26. Chiba K, Okazaki N, Kurogi A et al (2022) Randomized controlled trial of daily teriparatide, weekly high-dose teriparatide, or bisphosphonate in patients with postmenopausal osteoporosis: The TERABIT study. Bone 160:116416. https://doi.org/10.1016/j.bone.2022.116416

    Article  CAS  PubMed  Google Scholar 

  27. Miyamura S, Kuriyama K, Ebina K et al (2020) Utility of distal forearm DXA as a screening tool for primary osteoporotic fragility fractures of the distal radius: a case-control study. JBJS OA 5:e0036. https://doi.org/10.2106/JBJS.OA.19.00036

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schwarz Y, Goldshtein I, Friedman YE et al (2023) Bone mineral density of the ultra-distal radius: are we ignoring valuable information? Arch Osteoporos 18:28. https://doi.org/10.1007/s11657-023-01218-w

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kohji Kuriyama for his help in data acquisition.

Funding

The authors disclose receipt of the following financial or material support for the research, authorship, and/or publication of this article: funding from the Japanese Orthopaedic Association (JOA-Subsidized Science Project Research: grant number 2023–2) and the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) (Grant numbers 19H01176, 20H04550, and 21K16655).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, project administration, writing—original draft preparation: KU. Formal analysis and investigation: KU, SM. Software: KU, YO. Writing—review and editing: SM, YO, HM, KT, HH, KE. Funding acquisition: KU, YO, YS. Resources: SM, TM. Supervision: TM, YS, SO.

Corresponding author

Correspondence to Keisuke Uemura.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethics approval

This study was approved by the Institutional Review Board of Osaka University and was conducted in accordance with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 445 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uemura, K., Miyamura, S., Otake, Y. et al. The effect of forearm rotation on the bone mineral density measurements of the distal radius. J Bone Miner Metab 42, 37–46 (2024). https://doi.org/10.1007/s00774-023-01473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01473-4

Keywords

Navigation