Skip to main content

Advertisement

Log in

RANKL as a therapeutic target of rheumatoid arthritis

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

A Correction to this article was published on 17 December 2020

This article has been updated

Abstract

Rheumatoid arthritis (RA) is an inflammatory disorder characterized by progressive joint destruction. Recent studies have demonstrated that osteoclasts are responsible for bone destruction in RA. Receptor activator of nuclear factor kappa B ligand (RANKL), an osteoclast differentiation factor, belongs to the tumor necrosis factor superfamily and plays a critical role in osteoclast differentiation. RANKL is highly expressed in the synovial tissues in patients with RA and is involved in osteoclast development and thus bone destruction in RA. Denosumab, a specific antibody to human RANKL, efficiently suppressed the progression of bone destruction in patients with RA in a randomized controlled study and is considered a putative therapeutic option for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 17 December 2020

    In the original publication of the article, the title of Table was published incorrectly. The correct title should read as “Baseline patient demographics and characteristics in DESIRABLE trial. Adopted from Reference with permission”.

References

  1. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    CAS  Google Scholar 

  2. Schett G (2017) Autoimmunity as a trigger for structural bone damage in rheumatoid arthritis. Mod Rheumatol 27:193–197. https://doi.org/10.1080/14397595.2016.1265907

    Article  CAS  PubMed  Google Scholar 

  3. Wassenberg S, Rau R (2002) Radiographic healing with sustained clinical remission in a patient with rheumatoid arthritis receiving methotrexate monotherapy. Arthritis Rheum 46:2804–2807. https://doi.org/10.1002/art.10568

    Article  PubMed  Google Scholar 

  4. Yamanaka H, Seto Y, Tanaka E, Furuya T, Nakajima A, Ikari K, Taniguchi A, Momohara S (2013) Management of rheumatoid arthritis: the 2012 perspective. Mod Rheumatol 23:1–7. https://doi.org/10.1007/s10165-012-0702-1

    Article  CAS  PubMed  Google Scholar 

  5. Chatzidionysiou K, Emamikia S, Nam J, Ramiro S, Smolen J, van der Heijde D, Dougados M, Bijlsma J, Burmester G, Scholte M, van Vollenhoven R, Landewe R (2017) Efficacy of glucocorticoids, conventional and targeted synthetic disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 76:1102–1107. https://doi.org/10.1136/annrheumdis-2016-210711

    Article  CAS  PubMed  Google Scholar 

  6. Nam JL, Takase-Minegishi K, Ramiro S, Chatzidionysiou K, Smolen JS, van der Heijde D, Bijlsma JW, Burmester GR, Dougados M, Scholte-Voshaar M, van Vollenhoven R, Landewe R (2017) Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 76:1113–1136. https://doi.org/10.1136/annrheumdis-2016-210713

    Article  CAS  PubMed  Google Scholar 

  7. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K et al (2017) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 76:960–977. https://doi.org/10.1136/annrheumdis-2016-210715

    Article  PubMed  Google Scholar 

  8. Burmester GR, Pope JE (2017) Novel treatment strategies in rheumatoid arthritis. Lancet 389:2338–2348. https://doi.org/10.1016/S0140-6736(17)31491-5

    Article  PubMed  Google Scholar 

  9. Ramiro S, Sepriano A, Chatzidionysiou K, Nam JL, Smolen JS, van der Heijde D, Dougados M, van Vollenhoven R, Bijlsma JW, Burmester GR, Scholte-Voshaar M, Falzon L, Landewe RBM (2017) Safety of synthetic and biological DMARDs: a systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 76:1101–1136. https://doi.org/10.1136/annrheumdis-2016-210708

    Article  PubMed  Google Scholar 

  10. Komano Y, Tanaka M, Nanki T, Koike R, Sakai R et al (2011) Incidence and risk factors for serious infection in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors: a report from the Registry of Japanese Rheumatoid Arthritis Patients for longterm safety. J Rheumatol 38:1258–1264. https://doi.org/10.3899/jrheum.101009

    Article  CAS  PubMed  Google Scholar 

  11. Tateishi H (1973) Ultrastructure of synovio-cartilage junction in rheumatoid arthritis. Kobe J Med Sci 19:51–66

    CAS  PubMed  Google Scholar 

  12. Bromley M, Woolley DE (1984) Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 27:968–975

    Article  CAS  Google Scholar 

  13. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152:943–951

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki Y, Nishikaku F, Nakatuka M, Koga Y (1998) Osteoclast-like cells in murine collagen induced arthritis. J Rheumatol 25:1154–1160

    CAS  PubMed  Google Scholar 

  15. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536. https://doi.org/10.1038/nrendo.2013.137

    Article  CAS  PubMed  Google Scholar 

  16. Kadono Y, Tanaka S, Nishino J, Nishimura K, Nakamura I, Miyazaki T, Takayanagi H, Nakamura K (2009) Rheumatoid arthritis associated with osteopetrosis. Mod Rheumatol 19:687–690. https://doi.org/10.1007/s10165-009-0208-7

    Article  PubMed  Google Scholar 

  17. Ralston SH, Hacking L, Willocks L, Bruce F, Pitkeathly DA (1989) Clinical, biochemical, and radiographic effects of aminohydroxypropylidene bisphosphonate treatment in rheumatoid arthritis. Ann Rheum Dis 48:396–399

    Article  CAS  Google Scholar 

  18. Eggelmeijer F, Papapoulos SE, van Paassen HC, Dijkmans BA, Breedveld FC (1994) Clinical and biochemical response to single infusion of pamidronate in patients with active rheumatoid arthritis: a double blind placebo controlled study. J Rheumatol 21:2016–2020

    CAS  PubMed  Google Scholar 

  19. Herrak P, Gortz B, Hayer S, Redlich K, Reiter E, Gasser J, Bergmeister H, Kollias G, Smolen JS, Schett G (2004) Zoledronic acid protects against local and systemic bone loss in tumor necrosis factor-mediated arthritis (in eng). Arthritis Rheum 50:2327–2337

    Article  CAS  Google Scholar 

  20. Sims NA, Green JR, Glatt M, Schlict S, Martin TJ, Gillespie MT, Romas E (2004) Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis (in eng). Arthritis Rheum 50:2338–2346

    Article  CAS  Google Scholar 

  21. Jarrett SJ, Conaghan PG, Sloan VS, Papanastasiou P, Ortmann CE, O'Connor PJ, Grainger AJ, Emery P (2006) Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum 54:1410–1414. https://doi.org/10.1002/art.21824

    Article  CAS  PubMed  Google Scholar 

  22. Fujikawa Y, Sabokbar A, Neale S, Athanasou NA (1996) Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis 55:816–822

    Article  CAS  Google Scholar 

  23. Takayanagi H, Oda H, Yamamoto S, Kawaguchi H, Tanaka S, Nishikawa T, Koshihara Y (1997) A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 240:279–286. https://doi.org/10.1006/bbrc.1997.7404

    Article  CAS  PubMed  Google Scholar 

  24. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR (2000) Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43:250–258

    Article  CAS  Google Scholar 

  25. Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 43:2523–2530

    Article  CAS  Google Scholar 

  26. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S (2000) Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43:259–269

    Article  CAS  Google Scholar 

  27. Takayanagi H, Kim S, Taniguchi T (2002) Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res 4(Suppl 3):S227–S232. https://doi.org/10.1186/ar581

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baron R (1989) Polarity and membrane transport in osteoclasts. Connect Tissue Res 20:109–120

    Article  CAS  Google Scholar 

  29. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682. https://doi.org/10.1084/jem.20061775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68. https://doi.org/10.1038/nm.3432

    Article  CAS  PubMed  Google Scholar 

  31. Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G, Nakashima T, Takayanagi H (2016) RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 75:1187–1195. https://doi.org/10.1136/annrheumdis-2014-207137

    Article  CAS  PubMed  Google Scholar 

  32. Hashizume M, Hayakawa N, Mihara M (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford) 47:1635–1640. https://doi.org/10.1093/rheumatology/ken363

    Article  CAS  Google Scholar 

  33. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  CAS  Google Scholar 

  34. Pettit AR, Ji H, von Stechow D, Muller R, Goldring SR, Choi Y, Benoist C, Gravallese EM (2001) TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis (in eng). Am J Pathol 159:1689–1699

    Article  CAS  Google Scholar 

  35. Redlich K, Hayer S, Ricci R, David JP, Tohidast-Akrad M, Kollias G, Steiner G, Smolen JS, Wagner EF, Schett G (2002) Osteoclasts are essential for TNF-alpha-mediated joint destruction (in eng). J Clin Invest 110:1419–1427

    Article  CAS  Google Scholar 

  36. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial F (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765. https://doi.org/10.1056/NEJMoa0809493

    Article  CAS  PubMed  Google Scholar 

  37. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822. https://doi.org/10.1016/S0140-6736(10)62344-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139. https://doi.org/10.1200/JCO.2010.29.7101

    Article  CAS  PubMed  Google Scholar 

  39. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Sleeboom H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125–1132. https://doi.org/10.1200/JCO.2010.31.3304

    Article  CAS  PubMed  Google Scholar 

  40. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study G (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309. https://doi.org/10.1002/art.23417

    Article  CAS  Google Scholar 

  41. Deodhar A, Dore RK, Mandel D, Schechtman J, Shergy W, Trapp R, Ory PA, Peterfy CG, Fuerst T, Wang H, Zhou L, Tsuji W, Newmark R (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62:569–574. https://doi.org/10.1002/acr.20004

    Article  CAS  Google Scholar 

  42. Dore RK, Cohen SB, Lane NE, Palmer W, Shergy W, Zhou L, Wang H, Tsuji W, Newmark R, Denosumab RASG (2010) Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann Rheum Dis 69:872–875. https://doi.org/10.1136/ard.2009.112920

    Article  CAS  PubMed  Google Scholar 

  43. Takeuchi T, Tanaka Y, Ishiguro N, Yamanaka H, Yoneda T, Ohira T, Okubo N, Genant HK, van der Heijde D (2016) Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose-response study of AMG 162 (Denosumab) in patients with RheumatoId arthritis on methotrexate to Validate inhibitory effect on bone Erosion (DRIVE)-a 12 month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis 75:983–990. https://doi.org/10.1136/annrheumdis-2015-208052

    Article  CAS  PubMed  Google Scholar 

  44. Takeuchi T, Tanaka Y, Soen S, Yamanaka H, Yoneda T, Tanaka S, Nitta T, Okubo N, Genant HK, van der Heijde D (2019) Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIRABLE study): a randomised, double-blind, placebo-controlled phase 3 trial. Ann Rheum Dis 78:899–907. https://doi.org/10.1136/annrheumdis-2018-214827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasegawa T, Kaneko Y, Izumi K, Takeuchi T (2017) Efficacy of denosumab combined with bDMARDs on radiographic progression in rheumatoid arthritis. Joint Bone Spine 84:379–380. https://doi.org/10.1016/j.jbspin.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka S, Tanaka Y, Ishiguro N, Yamanaka H, Takeuchi T (2018) RANKL: a therapeutic target for bone destruction in rheumatoid arthritis. Mod Rheumatol 28:9–16. https://doi.org/10.1080/14397595.2017.1369491

    Article  CAS  PubMed  Google Scholar 

  47. van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54:3104–3112. https://doi.org/10.1002/art.22117

    Article  PubMed  Google Scholar 

  48. Brennan SL, Toomey L, Kotowicz MA, Henry MJ, Griffiths H, Pasco JA (2014) Rheumatoid arthritis and incident fracture in women: a case-control study. BMC Musculoskelet Disord 15:13. https://doi.org/10.1186/1471-2474-15-13

    Article  PubMed  PubMed Central  Google Scholar 

  49. Omata Y, Hagiwara F, Nishino J, Matsudaira K, Kadono Y, Juji T, Mori T, Nakayama H, Nagase Y, Hirose J, Yasui T, Matsumoto T, Matsui T, Tohma S, Tanaka S (2014) Vertebral fractures affect functional status in postmenopausal rheumatoid arthritis patients. J Bone Miner Metab 32:725–731. https://doi.org/10.1007/s00774-013-0552-8

    Article  PubMed  Google Scholar 

  50. Spector TD, Hall GM, McCloskey EV, Kanis JA (1993) Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 306:558

    Article  CAS  Google Scholar 

  51. Ochi K, Inoue E, Furuya T, Ikari K, Toyama Y, Taniguchi A, Yamanaka H, Momohara S (2015) Ten-year incidences of self-reported non-vertebral fractures in Japanese patients with rheumatoid arthritis: discrepancy between disease activity control and the incidence of non-vertebral fracture. Osteoporos Int 26:961–968. https://doi.org/10.1007/s00198-014-2911-2

    Article  CAS  PubMed  Google Scholar 

  52. Kim SY, Schneeweiss S, Liu J, Solomon DH (2012) Effects of disease-modifying antirheumatic drugs on nonvertebral fracture risk in rheumatoid arthritis: a population-based cohort study. J Bone Miner Res 27:789–796. https://doi.org/10.1002/jbmr.1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mochizuki T, Yano K, Ikari K, Kawakami K, Hiroshima R, Koenuma N, Ishibashi M, Momohara S (2017) Effects of denosumab treatment on bone mineral density and joint destruction in patients with rheumatoid arthritis. J Bone Miner Metab. https://doi.org/10.1007/s00774-017-0848-1

    Article  PubMed  Google Scholar 

  54. Kinoshita H, Miyakoshi N, Kashiwagura T, Kasukawa Y, Sugimura Y, Shimada Y (2016) Comparison of the efficacy of denosumab and bisphosphonates for treating secondary osteoporosis in patients with rheumatoid arthritis. Mod Rheumatol. https://doi.org/10.1080/14397595.2016.1232776

    Article  PubMed  Google Scholar 

  55. Saag KG, Pannacciulli N, Geusens P, Adachi JD, Messina OD, Morales-Torres J, Emkey R, Butler PW, Yin X, Lems WF (2019) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: final results of a twenty-four-month randomized, double-blind, double-dummy trial. Arthritis Rheumatol 71:1174–1184. https://doi.org/10.1002/art.40874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saag KG, Wagman RB, Geusens P, Adachi JD, Messina OD, Emkey R, Chapurlat R, Wang A, Pannacciulli N, Lems WF (2018) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: a multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol 6:445–454. https://doi.org/10.1016/S2213-8587(18)30075-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakae Tanaka.

Ethics declarations

Conflict of interest

Sakae Tanaka received consulting fees, speaking fees, and/or honoraria from Asahi Kasei Pharma Co., Daiichi-Sankyo Co., Ltd., Mitsubishi-Tanabe Pharma Co., and Teijin Pharma, Ltd. and research grants from Astellas Pharma Inc., Asahi Kasei Pharma Co., AYUMI Pharmaceutical Co., Chugai Pharmaceutical Co., Ltd., Daiichi-Sankyo Co., Ltd., Ono Pharmaceutical Co., Ltd., Pfizer Japan Inc., Stryker Japan K.K., Taisho Toyama Pharmaceutical Co., Ltd., and Teijin Pharma Ltd. Yoshiya Tanaka received speaking fees and/or honoraria from Daiichi-Sankyo Co. Ltd., Eli Lilly Japan K.K., Novartis, YL Biologics Ltd., Bristol-Myers Squibb Co., Eisai Co. Ltd., Chugai Pharmaceutical Co. Ltd., Abbvie, Astellas Pharma Inc., Pfizer Japan Inc., Sanofi K.K., Asahi Kasei Pharma Inc., GSK, Mitsubishi-Tanabe Pharma Co., Gilead Sciences Inc., Janssen Pharmaceutical K.K., and received research grants from Abbvie, Mitsubishi Tanabe Pharma Co., Chugai Pharmaceutical Co. Ltd., Asahi Kasei Pharma Inc., Eisai Co. Ltd., Takeda Pharmaceutical Co. Ltd., Daiichi-Sankyo Co. Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S., Tanaka, Y. RANKL as a therapeutic target of rheumatoid arthritis. J Bone Miner Metab 39, 106–112 (2021). https://doi.org/10.1007/s00774-020-01159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-020-01159-1

Keywords

Navigation