Skip to main content

Advertisement

Log in

Circulating FGF23 is not associated with cardiac dysfunction, atherosclerosis, infection or inflammation in hemodialysis patients

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Fibroblast growth factor (FGF) 23 is a bone-derived hormone regulating serum inorganic phosphate (Pi) concentration. FGF23 is also involved in the development of chronic kidney disease (CKD)-mineral and bone disorder. Serum FGF23 concentration begins to increase early in the progression of CKD and can be remarkably high in hemodialysis patients with end-stage renal disease. It has been reported that high FGF23 concentration is a risk factor for cardiac dysfunction, atherosclerosis, infection or systemic inflammation in CKD patients. FGF23 was also shown to induce cardiac hypertrophy directly acting on cardiomyocytes. However, it is still controversial whether high FGF23 is causing cardiac dysfunction, atherosclerosis, infection or systemic inflammation in CKD patients. In the current study, we investigated whether FGF23 concentration is associated with cardiac dysfunction, atherosclerosis, infection or systemic inflammation in Japanese hemodialysis patients. We recruited 119 hemodialysis patients and examined the association between serum FGF23 concentration and several parameters concerning mineral metabolism, cardiac dysfunction, atherosclerosis, infection, and systemic inflammation. Serum FGF23 concentration was independently associated with serum calcium and Pi concentration (β = 0.276, p < 0.001; β = 0.689, p < 0.001). However, serum FGF23 concentration was not associated with parameters of cardiac dysfunction, atherosclerosis, infection, and systemic inflammation, either. Our results do not support the hypothesis that high FGF23 in dialysis patients is the cause of cardiac dysfunction, atherosclerosis, infection or systemic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takashi Y, Fukumoto S (2018) FGF23 beyond phosphotropic hormone. Trends Endocrinol Metab 29:755–767

    Article  CAS  Google Scholar 

  2. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  Google Scholar 

  3. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Investig 113:561–568

    Article  CAS  Google Scholar 

  4. Weber TJ, Liu S, Indridason OS, Quarles LD (2003) Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18:1227–1234

    Article  CAS  Google Scholar 

  5. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378

    Article  CAS  Google Scholar 

  6. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ (2011) Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab 96:3541–3549

    Article  CAS  Google Scholar 

  7. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, Garringer HJ, Vidal R, Chan RJ, Goodwin CB, Hui SL, Peacock M, White KE (2011) Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA 108:E1146–E1155

    Article  CAS  Google Scholar 

  8. Clinkenbeard EL, Farrow EG, Summers LJ, Cass TA, Roberts JL, Bayt CA, Lahm T, Albrecht M, Allen MR, Peacock M, White KE (2014) Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res 29:361–369

    Article  CAS  Google Scholar 

  9. Ito N, Wijenayaka AR, Prideaux M, Kogawa M, Ormsby RT, Evdokiou A, Bonewald LF, Findlay DM, Atkins GJ (2015) Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol Cell Endocrinol 399:208–218

    Article  CAS  Google Scholar 

  10. Hori M, Kinoshita Y, Taguchi M, Fukumoto S (2016) Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Miner Metab 34:132–139

    Article  CAS  Google Scholar 

  11. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    Article  CAS  Google Scholar 

  12. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A et al (2011) FGF23 induces left ventricular hypertrophy. J Clin Investig 121:4393–4408

    Article  CAS  Google Scholar 

  13. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A et al (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22:1020–1032

    Article  CAS  Google Scholar 

  14. Leifheit-Nestler M, Grosse Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, Klintschar M, Becker JU, Erbersdobler A, Aufricht C, Seeman T, Fischer DC, Faul C, Haffner D (2016) Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transpl 31:1088–1099

    Article  CAS  Google Scholar 

  15. Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205:385–390

    Article  CAS  Google Scholar 

  16. Mirza MA, Hansen T, Johansson L, Ahlstrom H, Larsson A, Lind L, Larsson TE (2009) Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transpl 24:3125–3131

    Article  CAS  Google Scholar 

  17. Balci M, Kirkpantur A, Gulbay M, Gurbuz OA (2010) Plasma fibroblast growth factor-23 levels are independently associated with carotid artery atherosclerosis in maintenance hemodialysis patients. Hemodial Int 14:425–432

    Article  Google Scholar 

  18. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, El Sheikh E, Sharaf El Din UA (2010) Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transpl 25:2679–2685

    Article  CAS  Google Scholar 

  19. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, Drueke TB, Massy ZA (2012) FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int 23:2017–2025

    Article  CAS  Google Scholar 

  20. Jean G, Bresson E, Lorriaux C, Mayor B, Hurot JM, Deleaval P, Chazot C (2012) Increased levels of serum parathyroid hormone and fibroblast growth factor-23 are the main factors associated with the progression of vascular calcification in long-hour hemodialysis patients. Nephron Clin Pract 120:c132–c138

    Article  CAS  Google Scholar 

  21. Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, Meersch M, Unruh M, Zarbock A (2016) FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Investig 126:962–974

    Article  Google Scholar 

  22. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, Brand M, Wolf M, Faul C (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90:985–996

    Article  CAS  Google Scholar 

  23. Unsal A, Kose Budak S, Koc Y, Basturk T, Sakaci T, Ahbap E, Sinangil A (2012) Relationship of fibroblast growth factor 23 with left ventricle mass index and coronary calcificaton in chronic renal disease. Kidney Blood Press Res 36:55–64

    Article  CAS  Google Scholar 

  24. Gungor O, Kismali E, Sisman AR, Kircelli F, Carrero JJ, Tatar E, Asci G, Toz H (2013) The relationships between serum sTWEAK, FGF-23 levels, and carotid atherosclerosis in renal transplant patients. Ren Fail 35:77–81

    Article  CAS  Google Scholar 

  25. Knap B, Veceric-Haler Z, Benedik M, Buturovic-Ponikvar J, Ponikvar R, Bren AF (2013) Fibroblast growth factor 23 and left ventricular mass index in maintenance hemodialysis patients: standard versus long nocturnal hemodialysis. Ther Apher Dial 17:407–411

    Article  CAS  Google Scholar 

  26. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960

    Article  CAS  Google Scholar 

  27. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  Google Scholar 

  28. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  Google Scholar 

  29. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  CAS  Google Scholar 

  30. Yu X, Ibrahimi OA, Goetz R, Zhang F, Davis SI, Garringer HJ, Linhardt RJ, Ornitz DM, Mohammadi M, White KE (2005) Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146:4647–4656

    Article  CAS  Google Scholar 

  31. Isakova T, Xie H, Yang W, Xie D, Anderson AH et al (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439

    Article  CAS  Google Scholar 

  32. Takashi Y, Kinoshita Y, Hori M, Ito N, Taguchi M, Fukumoto S (2017) Patients with FGF23-related hypophosphatemic rickets/osteomalacia do not present with left ventricular hypertrophy. Endocr Res 42:132–137

    Article  CAS  Google Scholar 

  33. Marthi A, Donovan K, Haynes R, Wheeler DC, Baigent C, Rooney CM, Landray MJ, Moe SM, Yang J, Holland L, di Giuseppe R, Bouma-de Krijger A, Mihaylova B, Herrington WG (2018) Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis. J Am Soc Nephrol 29:2015–2027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all staffs of Kawashima Hospital for giving us great support concerning recruiting patients and correcting data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Fukumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takashi, Y., Wakino, S., Minakuchi, H. et al. Circulating FGF23 is not associated with cardiac dysfunction, atherosclerosis, infection or inflammation in hemodialysis patients. J Bone Miner Metab 38, 70–77 (2020). https://doi.org/10.1007/s00774-019-01027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01027-7

Keywords

Navigation