Skip to main content

Advertisement

Log in

The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The cytoskeletal organization of osteoclasts is required for bone resorption. Binding of dynamin with guanosine triphosphate (GTP) was previously suggested to be required for the organization of the actin cytoskeleton. However, the role of the GTPase activity of dynamin in the organization of the actin cytoskeleton as well as in the bone-resorbing activity of osteoclasts remains unclear. This study investigated the effects of dynasore, an inhibitor of the GTPase activity of dynamin, on the bone-resorbing activity of and actin ring formation in mouse osteoclasts in vitro and in vivo. Dynasore inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation and rapidly disrupting actin rings in osteoclasts. A time-lapse image analysis showed that dynasore shrank actin rings in osteoclasts within 30 min. The intraperitoneal administration of dynasore inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced trabecular bone loss in mouse femurs. These in vitro and in vivo results suggest that the GTPase activity of dynamin is critical for the bone-resorbing activity of osteoclasts and that dynasore is a seed for the development of novel anti-resorbing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  2. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi N, Ejiri S, Yanagisawa S, Ozawa H (2007) Regulation of osteoclast polarization. Odontology 95:1–9

    Article  CAS  PubMed  Google Scholar 

  4. Teitelbaum SL (2011) The osteoclast and its unique cytoskeleton. Ann NY Acad Sci 1240:14–17

    Article  CAS  PubMed  Google Scholar 

  5. Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113:377–381

    CAS  PubMed  Google Scholar 

  6. Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85:195–202

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama T, Mizoguchi T, Uehara S, Yamashita T, Kawahara I, Kobayashi Y, Moriyama Y, Kurihara S, Sahara N, Ozawa H, Udagawa N, Takahashi N (2011) Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices–a simple method for identifying polarized osteoclasts. Bone 49:1331–1339

    Article  CAS  PubMed  Google Scholar 

  8. Urrutia R, Henley JR, Cook T, McNiven MA (1997) The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci USA 94:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19:417–425

    Article  CAS  PubMed  Google Scholar 

  10. Mettlen M, Pucadyil T, Ramachandran R, Schmid SL (2009) Dissecting dynamin’s role in clathrin-mediated endocytosis. Biochem Soc Trans 37:1022–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schafer DA (2004) Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5:463–469

    Article  CAS  PubMed  Google Scholar 

  12. Bruzzaniti A, Neff L, Sanjay A, Horne WC, De Camilli P, Baron R (2005) Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell 16:3301–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horne WC, Sanjay A, Bruzzaniti A, Baron R (2005) The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 208:106–125

    Article  CAS  PubMed  Google Scholar 

  14. Bruzzaniti A, Neff L, Sandoval A, Du L, Horne WC, Baron R (2009) Dynamin reduces Pyk2 Y402 phosphorylation and SRC binding in osteoclasts. Mol Cell Biol 29:3644–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eleniste PP, Du L, Shivanna M, Bruzzaniti A (2012) Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts. Int J Biochem Cell Biol 44:790–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S (2010) Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J 29:3593–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin NY, Choi H, Neff L, Wu Y, Saito H, Ferguson SM, De Camilli P, Baron R (2014) Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. J Cell Biol 207:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  CAS  PubMed  Google Scholar 

  19. Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci USA 103:17955–17960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung C, Barylko B, Leitz J, Liu X, Kavalali ET (2010) Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci 30:1363–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Otsuka A, Abe T, Watanabe M, Yagisawa H, Takei K, Yamada H (2009) Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells. Biochem Biophys Res Commun 378:478–482

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi N, Udagawa N, Kobayashi Y, Suda T (2007) Generation of osteoclasts in vitro, and assay of osteoclast activity. Methods Mol Med 135:285–301

    Article  CAS  PubMed  Google Scholar 

  23. Okamoto M, Udagawa N, Uehara S, Maeda K, Yamashita T, Nakamichi Y, Kato H, Saito N, Minami Y, Takahashi N, Kobayashi Y (2014) Noncanonical Wnt5a enhances Wnt/beta-catenin signaling during osteoblastogenesis. Sci Rep 4:4493

    PubMed  PubMed Central  Google Scholar 

  24. Kuroda H, Nakamura M, Kamiyama K (1996) Effects of calcitonin and parathyroid hormone on the distribution of F-actin in the clear zone of osteoclasts in vivo. Bone 19:115–120

    Article  CAS  PubMed  Google Scholar 

  25. Tomimori Y, Mori K, Koide M, Nakamichi Y, Ninomiya T, Udagawa N, Yasuda H (2009) Evaluation of pharmaceuticals with a novel 50-h animal model of bone loss. J Bone Miner Res 24:1194–1205

    Article  CAS  PubMed  Google Scholar 

  26. Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, Nishita M, Marumo K, Martin TJ, Minami Y, Takahashi N (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18:405–412

    Article  CAS  PubMed  Google Scholar 

  27. Morimoto R, Uehara S, Yatsushiro S, Juge N, Hua Z, Senoh S, Echigo N, Hayashi M, Mizoguchi T, Ninomiya T, Udagawa N, Omote H, Yamamoto A, Edwards RH, Moriyama Y (2006) Secretion of l-glutamate from osteoclasts through transcytosis. EMBO J 25:4175–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron R, De Camilli P (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150:377–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Destaing O, Saltel F, Geminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee A, Frank DW, Marks MS, Lemmon MA (1999) Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr Biol 9:261–264

    Article  PubMed  Google Scholar 

  31. Palokangas H, Mulari M, Vaananen HK (1997) Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J Cell Sci 110:1767–1780

    CAS  PubMed  Google Scholar 

  32. Stenbeck G, Horton MA (2004) Endocytic trafficking in actively resorbing osteoclasts. J Cell Sci 117:827–836

    Article  CAS  PubMed  Google Scholar 

  33. Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266

    Article  CAS  PubMed  Google Scholar 

  34. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103:2653–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roth D, Krammer PH, Gulow K (2014) Dynamin related protein 1-dependent mitochondrial fission regulates oxidative signalling in T cells. FEBS Lett 588:1749–1754

    Article  CAS  PubMed  Google Scholar 

  36. Masaike Y, Takagi T, Hirota M, Yamada J, Ishihara S, Yung TM, Inoue T, Sawa C, Sagara H, Sakamoto S, Kabe Y, Takahashi Y, Yamaguchi Y, Handa H (2010) Identification of dynamin-2-mediated endocytosis as a new target of osteoporosis drugs, bisphosphonates. Mol Pharmacol 77:262–269

    Article  CAS  PubMed  Google Scholar 

  37. Takito J, Otsuka H, Yanagisawa N, Arai H, Shiga M, Inoue M, Nonaka N, Nakamura M (2014) Regulation of osteoclast multinucleation by the actin cytoskeleton signaling network. J Cell Physiol 230:395–405

    Article  Google Scholar 

  38. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research, Kakenhi [Grant number: 25221310 (N.T.), 24390417(N.U.), 25293423 (Y.K.), 25462904 (S.U.)].

Conflict of interest

None of the authors have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kobayashi.

Additional information

G. J. Thirukonda and S. Uehara contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirukonda, G.J., Uehara, S., Nakayama, T. et al. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts. J Bone Miner Metab 34, 395–405 (2016). https://doi.org/10.1007/s00774-015-0683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0683-1

Keywords

Navigation