Skip to main content
Log in

High-performance thin-layer chromatography fingerprint profile analysis and spectro-densitometric evaluation of antiproliferative antioxidants such as ellagic acid and gallic acid from four widely used Terminalia species

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

The emerging need for quality control to assess the chemical composition and stability of herbal raw materials has grown significantly along with their demand. The proposed research focuses on phytochemical analysis of hydro-alcoholic bark and fruit extracts from Terminalia (arjuna, bellirica, chebula, and catappa) followed by high-performance thin-layer chromatography (HPTLC) technique. HPTLC fingerprinting carried out on precoated silica gel F254 TLC revealed the presence of alkaloids, flavonoids, tannins, phenols, and antioxidants. The developed RP-HPTLC method was validated to quantify gallic acid (GA) and ellagic acid (EA). The calibration plot from linear regression analysis demonstrated a good polynomial regression relationship, with R values of 99.99% for the peak areas of GA and EA, respectively. The calibration range for GA and EA is 100–700 ng per band. Spectro-densitometric scanning verified GA and EA by four-way confirmation via RF, chromatogram, spectra, and visual comparison of chromatograms. The method was developed and validated in accordance with the International Council for Harmonisation guidelines. From the validation results, it can be concluded that this method would prove an excellent alternative to existing costly techniques such as gas chromatography and high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HPTLC:

High-performance thin-layer chromatography

TLC:

Thin-layer chromatography

RP-HPTLC:

Reversed-phase high-performance thin-layer chromatography

HPLC:

High-performance liquid chromatography

GA:

Gallic acid

EA:

Ellagic acid

ICH:

International Council for Harmonisation

ppm:

Parts per million

ppb:

Parts per billion

V/V :

Volume by volume

AR:

Analytical grade

rpm:

Rotations per minute

R:

Correlation coefficient

r 2 :

Regression coefficient

ICMR:

Indian Council of Medical Research

USP:

United States Pharmacopeia

DPPH:

2,2-Diphenyl-1-picrylhydrazyl or α,α-diphenyl-β-picrylhydrazyl

References

  1. Iheagwam FN, Dania OE, Michael-Onuoha HC, Ogunlana OO, Chinedu SN (2021) Antidiabetic activities of Terminalia species in Nigeria. In Alternative Medicine: Update (pp. 1–13). IntechOpen Limited, London

  2. Das G, Kim DY, Fan C, Gutiérrez-Grijalva EP, Heredia JB, Nissapatorn V, Mitsuwan W, Pereira ML, Nawaz M, Siyadatpanah A, Norouzi R (2020) Plants of the genus Terminalia: an insight on its biological potentials, pre-clinical and clinical studies. Front Pharmacol 11:561248. https://doi.org/10.3389/fphar.2020.561248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beressa A, Wariyo A, Chala G, Tefera Y (2021) Analytical method development for quality control and standardization of medicinal plants: a critical review. J Herbal Sci 10(1):9–20

    Google Scholar 

  4. Fan C, Dong Y, Xie Y, Su Y, Zhang X, Leavesley D, Upton Z (2015) Shikonin reduces TGF-β1-induced collagen production and contraction in hypertrophic scar-derived human skin fibroblasts. Int J Mol Med 36(4):985–991. https://doi.org/10.3892/ijmm.2015.2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang XR, Kaunda JS, Zhu HT, Wang D, Yang CR, Zhang YJ (2019) The genus Terminalia (Combretaceae): an ethnopharmacological, phytochemical and pharmacological review. Nat Prod Bioprospect 9:357–392. https://doi.org/10.1007/s13659-019-00222-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Desai SD, Pai SR, Desai NS (2021) A review on Terminalia arjuna (Roxb.) Wight & Arn.: the wonder medicinal plant with prodigious potential in therapeutics. Ann Phytomed 10(1):62–73. https://doi.org/10.21276/ap.2021.10.1.6

    Article  CAS  Google Scholar 

  7. Mishra S (2003) Abhinava Bhaishjya Kalpana Vigyana. Choukhambha Surbharti Prakashana, Varanasi. Reprint, p. 101

  8. Tushar PandurangTumbare M, Gaikwad MV, Wamane MV (2022) A Review on Terminalia arjuna. Int J Res Publ Rev 3:2468–2474.

  9. Bushra B, ur Rehman K, Khan D, Almehizia AA, Naglah AM, Al-Wasidi AS, Refat MS, El-Sayed MY, Ullah H, Khan S (2022) Isolation and bioassay of a new terminalone A from Terminalia arjuna. Molecules 28:1015. https://doi.org/10.20944/preprints202212.0486.v1

    Article  Google Scholar 

  10. Abraham A, Mathew L, Samuel S (2014) Pharmacognostic studies of the fruits of Terminalia bellirica (Gaertn.) Roxb. J Pharmacogn Phytochem 3(2):45–52

    Google Scholar 

  11. Kumar N, Khurana SM (2018) Phytochemistry and medicinal potential of the Terminalia bellirica Roxb. (Bahera). Indian J Nat Prod Res (IJNPR) [Formerly Natural Product Radiance (NPR)] 9(2):97–107

    CAS  Google Scholar 

  12. Rastogi RP, Mehrotra BN (2004) Compendium of medicinal plants. Central Drug Research Institute (CDRI), Lucknow and National Institute of Communication and Information Resources, New Delhi, 406.

  13. Deb A, Barua S, Das B (2016) Pharmacological activities of Baheda (Terminalia bellerica): a review. J Pharmacogn Phytochem 5(1):194–197

    CAS  Google Scholar 

  14. Singh MP, Gupta A, Sisodia SS (2018) Ethno and modern pharmacological profile of Baheda (Terminalia bellerica): a review. Pharm Chem J 5(1):153–162

    CAS  Google Scholar 

  15. Gupta A, Kumar R, Bhattacharyya P, Bishayee A, Pandey AK (2020) Terminalia bellirica (Gaertn.) Roxb. (Bahera) in health and disease: a systematic and comprehensive review. Phytomedicine 77:153278. https://doi.org/10.1016/j.phymed.2020.153278

    Article  CAS  PubMed  Google Scholar 

  16. Singh MP, Sharma CS (2010) Pharmacognostical evaluation of Terminalia chebula fruits on different market samples. Int J ChemTech Res 2(1):57–61

    Google Scholar 

  17. Manohar VR, Chandrashekar R, Rao SN (2012) Phytochemical analysis of Ethanolic Extract of Fruits of Terminalia chebula (EEFTC). Drug Invent Today 4(10):491–493

    CAS  Google Scholar 

  18. Singh A (ed) (2011) Herbalism, phytochemistry and ethnopharmacology. CRC Press, Boca Raton, FL

    Google Scholar 

  19. Ahirwar P (2018) Pharmacognostical, pharmaceutical studies and HPTLC fingerprint of Terminalia chebula Retz. Fruits. Int J Sci Res 8:718–721

    Google Scholar 

  20. Lawal AR, Olayinka BU, Abdulkareem KA, Abdulra’uf LB, Murthadah RA, Kayode OV (2022) Proximate, minerals and phytochemical evaluation of pericarp and seed of Terminalia catappa fruit. Biosci J 10(2):191–203

    Google Scholar 

  21. Yakubu Y, Lee SY, Shaari K (2021) Chemical profiles of Terminalia catappa LINN Nut and Terminalia subspathulata KING fruit. Pertanika J Tropical Agric Sci. https://doi.org/10.47836/pjtas.44.4.06

    Article  Google Scholar 

  22. Bidikar CM, Hurkadale PJ, Nandanwadkar SM, Hegde HV (2022) A validated spectro densitometric regulatory compliant USP-HP-TLC protocol for quantification of polyphenols and antioxidants from polyherbal formulations containing Terminalia species. J Chromatogr B 1207:123379. https://doi.org/10.1016/j.jchromb.2022.123379

    Article  CAS  Google Scholar 

  23. Oluyemisi F, Henry O, Peter O (2012) Standardization of herbal medicines—a review. Int J Biodiv Conserv 4(3):101–112. https://doi.org/10.5897/IJBC11.163

    Article  Google Scholar 

  24. Dongre S, Shishir P (2022) Comparative phyto-pharmacognostic study of field collected and pharmacy sample of Arjuna (Terminalia arjuna) bark. J Ayurveda Integr Med Sci 7(2):07–15

    Google Scholar 

  25. Charegaonkar D (2011) High-performance thin-layer chromatography: Excellent automation. In: Srivastava MM (ed) High-Performance Thin-Layer Chromatography (HPTLC). Springer, Berlin, pp 55–65

    Chapter  Google Scholar 

  26. Parys W, Pyka-Pająk A, Dołowy M (2019) Application of thin-layer chromatography in combination with densitometry for the determination of diclofenac in enteric coated tablets. Pharmaceuticals 12(4):183. https://doi.org/10.3390/ph12040183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yadav P, Mahour K, Kumar A (2011) Standardization and evaluation of herbal drug formulations. J Adv Labor Res Biol 2(4):161–166

    Google Scholar 

  28. Pandey A, Tripathi S (2014) Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2(5):115–119

    Google Scholar 

  29. Grushka E, Grinberg N (2016) Advances in chromatography, vol 49. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  30. Carr PW, Grinberg N (2017) Advances in chromatography, vol 55. CRC Press, Boca Raton, FL

    Google Scholar 

  31. Orfali R, Perveen S, Aati HY, Alam P, Noman OM, Palacios J, Al-Kurbi BS, Al-Taweel AM, Khan A, Mehmood R, Khan SI (2021) High-performance thin-layer chromatography for rutin, chlorogenic acid, caffeic acid, ursolic acid, and stigmasterol analysis in Periploca aphylla extracts. Separations 8(4):44. https://doi.org/10.3390/separations8040044

    Article  CAS  Google Scholar 

  32. Noman OM, Nasr FA, Mothana RA, Alqahtani AS, Qamar W, Al-Mishari AA, Al-Rehaily AJ, Siddiqui NA, Alam P, Almarfadi OM (2020) Isolation, characterization, and HPTLC-quantification of compounds with anticancer potential from Loranthus acaciae Zucc. Separations 7(3):43. https://doi.org/10.3390/separations7030043

    Article  CAS  Google Scholar 

  33. Bui Q, Sherma J, Hines JK (2018) Using high performance thin layer chromatography-densitometry to study the influence of the prion [RNQ+] and its determinant prion protein Rnq1 on yeast lipid profiles. Separations 5(1):6. https://doi.org/10.3390/separations5010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Islam MK, Sostaric T, Lim LY, Hammer K, Locher C (2021) Antioxidant HPTLC–DPPH fingerprinting of honeys and tracking of antioxidant constituents upon thermal exposure. Foods 10(2):357. https://doi.org/10.3390/foods10020357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sutar RC, Gowtham M, Kashid GA (2023) Hptlc finger print profile of steroids from hydroalcohol extract of leaves of Holoptelea integrifolia (Roxb.). J Surv Fisher Sci 10(4S):980–989

    Google Scholar 

  36. Maharana S, Mangaonkar K, Phanse M (2022) Microscopic and HPTLC fingerprint analysis a tool for authentication and quality control of Nelumbo nucifera. Chem Afr 5(3):663–672. https://doi.org/10.1007/s42250-022-00338-z

    Article  CAS  Google Scholar 

  37. Ankad GM, Pai SR, Upadhya V, Hurkadale PJ, Hegde HV (2015) Pharmacognostic evaluation of Achyranthes coynei: Leaf. Egypt J Basic Appl Sci 2(1):25–31. https://doi.org/10.1055/s-0042-105296

    Article  Google Scholar 

  38. Pandey S, Kumar A, Singh A, Chaudhary A (2021) Best therapeutic activity of Rasnasaptakkwath may be achieved by its hydro-alcoholic dosage form: a comparative study. J Pharmacogn Phytochem 10(2):1182–1191. https://doi.org/10.22271/phyto.2021.v10.i2p.13969

    Article  CAS  Google Scholar 

  39. Lebanov L, Lam SC, Tedone L, Sostaric T, Smith JA, Ghiasvand A, Paull B (2021) Radical scavenging activity and metabolomic profiling study of ylang-ylang essential oils based on high-performance thin-layer chromatography and multivariate statistical analysis. J Chromatogr B 1179:122861. https://doi.org/10.1016/j.jchromb.2021.122861

    Article  CAS  Google Scholar 

  40. Onyebuchi C, Kavaz D (2020) Effect of extraction temperature and solvent type on the bioactive potential of Ocimumgratissimum L. extracts. Sci Rep 10(1):21760. https://doi.org/10.1038/s41598-020-78847-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morlock GE, Heil J, Inarejos-Garcia AM, Maeder J (2021) Effect-directed profiling of powdered tea extracts for catechins, theaflavins, flavonols and caffeine. Antioxidants 10(1):117. https://doi.org/10.3390/antiox10010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaudhary SK, Lalvenhimi S, Biswas S, Chanda J, Kar A, Bhardwaj PK, Sharma N, Mukherjee PK (2022) High-performance thin-layer chromatography (HPTLC) method development and validation for the quantification of catechin in the hydroalcoholic extract of Parkia roxburghii seed. JPC J Planar Chromat 35:161–167. https://doi.org/10.1007/s00764-022-00164-6

    Article  CAS  Google Scholar 

  43. Hurkadale PJ, Nandanwadkar SM, Bidikar CM, Patil RN, Hegde HV (2021) High-performance thin-layer chromatographic method development and determination of bio-enhancer from Piper trichostachyon: an ethnomedicinal plant. JPC J Planar Chromat 34(4):329–336. https://doi.org/10.1007/s00764-021-00113-9

    Article  CAS  Google Scholar 

  44. Chaudhary SK, Kar A, Bhardwaj PK, Sharma N, Devi SI, Mukherjee PK (2023) A validated high-performance thin-layer chromatography method for the quantification of chlorogenic acid in the hydroalcoholic extract of Gynura cusimbua leaves. JPC J Planar Chromat 36:45–53. https://doi.org/10.1007/s00764-023-00230-7

    Article  CAS  Google Scholar 

  45. Kanbarkar N, Mishra S, Nandanwadkar S, Alegaon S (2022) Assessment of anti-oxidant activity and quantification of epigallocatechin in Acacia suma heartwood by HPTLC-DPPH fingerprinting method. Chem Papers 76(9):5865–5878. https://doi.org/10.1007/s11696-022-02295-w

    Article  CAS  Google Scholar 

  46. Lingfa L, Gugulothu B, Jagtap S, Ankanagari S (2022) HPTLC fingerprinting reveals leaf and roots phytochemical variability in developmental stages of Withania somnifera. J Pharmacogn Phytochem 11(4):283–294. https://doi.org/10.21203/rs.3.rs-1744320/v1

    Article  CAS  Google Scholar 

  47. Enot MM, Sabesaje RD, Presores GMS, Barbosa GB, Ang AMG, Bautista RFT, Dela Cruz RY (2022) Development of an identification method for fern extracts using high-performance thin-layer chromatography (HPTLC). JPC J Planar Chromat 35(5):491–500. https://doi.org/10.1007/s00764-022-00204-1

    Article  CAS  Google Scholar 

  48. Nandanwadkar SM, Hurkadale PJ, Bidikar CM, Godbole MM (2021) Multielemental analysis and in vitro evaluation of free radical scavenging activity of natural phytopigments by ICP-OES and HPTLC. Front Pharmacol 12:620996. https://doi.org/10.3389/fphar.2021.620996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nonglang FP, Khale A, Bhan S (2022) Phytochemical characterization of the ethanolic extract of Kaempferia galanga rhizome for anti-oxidant activities by HPTLC and GC-MS. Fut J Pharm Sci 8(1):1–12. https://doi.org/10.1186/s43094-021-00394-1

    Article  Google Scholar 

  50. Lebanov L, Paull B (2022) Comparison of chemometric assisted targeted and untargeted approaches for the prediction of radical scavenging activity of ylang-ylang essential oils. J Chromatogr B 1191:123093. https://doi.org/10.1016/j.jchromb.2021.123093B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to General Manager, Chika Overseas, Gujarat, Vatva, Ahemdabad, India. The author and team express sincere gratitude to Mr. Akshay Charegaonkar Director Anchrom Enterprises (I) Pvt Ltd, Mulund, Mumbai, India, for the facilities provided for this research work. The authors also thank KLE College of Pharmacy and Dr Prabhakar Kore Basic Science Research Center for the laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitrali M. Bidikar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Research involving human and animal participants

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidikar, C.M., Hurkadale, P.J., Nandanwadkar, S.M. et al. High-performance thin-layer chromatography fingerprint profile analysis and spectro-densitometric evaluation of antiproliferative antioxidants such as ellagic acid and gallic acid from four widely used Terminalia species. JPC-J Planar Chromat 36, 169–178 (2023). https://doi.org/10.1007/s00764-023-00238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-023-00238-z

Keywords

Navigation