Skip to main content
Log in

Influence of starting zone on the efficiency of micro-thin-layer chromatography with controlled mobile phase flow rate

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

The micro-thin-layer chromatograms are presented with the controlled mobile phase flow through the adsorbent layer of HPTLC plate. The chromatograms can be developed with an optimal constant linear velocity of the mobile phase front and therefore higher performance of the chromatographic system can be obtained. The relationships of the plate height vs. linear velocity of the mobile phase front at short development distances are investigated and reported. In addition, the contribution of starting spot variance in total peak variance and the usefulness of different procedures of starting spots narrowing has been studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J (2013) Green chromatography. J Chromatogr A 1307:1–20. https://doi.org/10.1016/j.chroma.2013.07.099

    Article  CAS  PubMed  Google Scholar 

  2. Płotka-Wasylka J, Kurowska-Susdorf A, Sajid M, de la Guardia M, Namieśnik J, Tobiszewski M (2018) Green chemistry in higher education: state of the art, challenges, and future trends. Chemsuschem 11:2845–2858. https://doi.org/10.1002/cssc.201801109

    Article  CAS  PubMed  Google Scholar 

  3. Sánchez C, Dessì P, Duffy M, Lens PNL (2020) OpenTCC: an open source low-cost temperature-control chamber. HardwareX 7:E00099. https://doi.org/10.1016/j.ohx.2020.e00099

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alexovič M, Horstkotte B, Solich P, Sabo J (2016) Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: approaches based on impregnated membranes and porous supports. Anal Chim Acta 907:18–30. https://doi.org/10.1016/j.aca.2015.11.046

    Article  CAS  PubMed  Google Scholar 

  5. Alexovič M, Dotsikas Y, Bober P, Sabo J (2018) Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J. Chromatogr B Anal Technol Biomed Life Sci 1092:402–421. https://doi.org/10.1016/j.jchromb.2018.06.037

    Article  CAS  Google Scholar 

  6. Abdel-Rehim M, Pedersen-Bjergaard S, Abdel-Rehim A, Lucena R, Moein MM, Cárdenas S, Miró M (2020) Microextraction approaches for bioanalytical applications: an overview. J Chromatogr A 1616:460790. https://doi.org/10.1016/j.chroma.2019.460790

    Article  CAS  PubMed  Google Scholar 

  7. Tobiszewski M, Mechlińska A, Namieśnik J (2010) Green analytical chemistry—theory and practice. Chem Soc Rev 39:2869. https://doi.org/10.1039/b926439f

    Article  CAS  PubMed  Google Scholar 

  8. Tobiszewski M, Marć M, Gałuszka A, Namieśnik J (2015) Green chemistry metrics with special reference to green analytical chemistry. Molecules 20:10928–10946. https://doi.org/10.3390/molecules200610928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marcinkowska R, Namieśnik J, Tobiszewski M (2019) Green and equitable analytical chemistry. Curr Opin Green Sustain Chem 19:19–23. https://doi.org/10.1016/j.cogsc.2019.04.003

    Article  Google Scholar 

  10. Koel M, Kaljurand M (2019) Green analytical chemistry, 2nd edn. The Royal Society of Chemistry, CPI Group, Croydon

    Google Scholar 

  11. Costa R (2014) Newly introduced sample preparation techniques: towards miniaturization. Crit Rev Anal Chem 44:299–310. https://doi.org/10.1080/10408347.2013.860874

    Article  CAS  PubMed  Google Scholar 

  12. Zarzycka M (2011) Wykorzystanie danych retencyjnych uzyskanych przy pomocy techniki mikro-TLC w doborze warunków procesu ekstrakcji do fazy stałej (SPE) prowadzonej z użyciem faz odwróconych (The use of retention data obtained by means of the micro-TLC technique in the selection of the conditions of the solid phase extraction (SPE) process carried out with the use of reversed phases). Camera Separatoria 3:129–145

    Google Scholar 

  13. Pereira JC, Marques JMC, Włodarczyk E, Fenert B, Zarzycki PK (2018) Toward the understanding of micro-tlc behavior of various dyes on silica and cellulose stationary phases using a data mining approach. J AOAC Int 101:1437–1447. https://doi.org/10.5740/jaoacint.18-0061

    Article  CAS  PubMed  Google Scholar 

  14. Włodarczyk E, Zarzycki PK (2017) Chromatographic behavior of selected dyes on silica and cellulose micro-TLC plates: potential application as target substances for extraction, chromatographic, and/or microfluidic systems. J Liq Chromatogr Relat Technol 40:259–281. https://doi.org/10.1080/10826076.2017.1298028

    Article  CAS  Google Scholar 

  15. Nowak P, Kosińska J, Glinka M, Kamiński M (2017) The thin-layer microchromatography (μTLC) and TLC-FID technique as a new methodology in the study of lubricating oils. J AOAC Int 100:922–934. https://doi.org/10.5740/jaoacint.17-0167

    Article  CAS  PubMed  Google Scholar 

  16. Włodarczyk E, Baran MJ, Śla̧czka MM, Portka JK, Zarzycki PK (2014) Fingerprinting of soot dust materials using micro-TLC. J Liq Chromatogr Relat Technol 37:2846–2856. https://doi.org/10.1080/10826076.2014.907116

    Article  CAS  Google Scholar 

  17. Zarzycki PK, Śla̧czka MM, Włodarczyk E, Baran MJ (2013) Micro-TLC approach for fast screening of environmental samples derived from surface and sewage waters. Chromatographia 76:1249–1259. https://doi.org/10.1007/s10337-013-2445-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ślączka-Wilk MM, Włodarczyk E, Kaleniecka A, Zarzycki PK (2017) Miniaturized temperature-controlled planar chromatography (Micro-TLC) as a versatile technique for fast screening of micropollutants and biomarkers derived from surface water ecosystems and during technological processes of wastewater treatment. J AOAC Int 100:935–949. https://doi.org/10.5740/jaoacint.17-0168

    Article  CAS  PubMed  Google Scholar 

  19. Hawrył MA, Niemiec MA, Słomka K, Waksmundzka-Hajnos M, Szymczak G (2016) Two-dimensional micro-TLC phenolic fingerprints of selected Mentha sp. on cyano-bonded polar stationary phase. J Chromatogr Sci 54:64–69. https://doi.org/10.1093/chromsci/bmv093

    Article  CAS  PubMed  Google Scholar 

  20. Hawrył MA, Świeboda R, Hawrył A, Niemiec M, Waksmundzka-Hajnos M (2017) Micro thin-layer chromatography fingerprints of selected basil species and their chemometric analysis. J AOAC Int 100:916–921. https://doi.org/10.5740/jaoacint.17-0166

    Article  CAS  PubMed  Google Scholar 

  21. Malinowska I, Studziński M, Niezabitowska K, Gadzikowska M (2013) Comparison of TLC and different micro TLC techniques in analysis of tropane alkaloids and their derivatives mixture from Datura Inoxia mill. Extract, Chromatographia 76:1327–1332. https://doi.org/10.1007/s10337-013-2414-x

    Article  CAS  PubMed  Google Scholar 

  22. Głód BK, Wantusiak PM, Piszcz P, Lewczuk E, Zarzycki PK (2015) Application of micro-TLC to the total antioxidant potential (TAP) measurement. Food Chem 173:749–754. https://doi.org/10.1016/j.foodchem.2014.10.058

    Article  CAS  PubMed  Google Scholar 

  23. Kirchert S, Kaiser RE, Morlock GE (2019) In-process quality control of wine by planar chromatography versus micro planar chromatography. J Chromatogr A 1588:137–149. https://doi.org/10.1016/j.chroma.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  24. Morlock GE, Oellig C, Bezuidenhout LW, Brett MJ, Schwack W (2010) Miniaturized planar chromatography using office peripherals. Anal Chem 82:2940–2946

    Article  CAS  Google Scholar 

  25. Häbe TT, Morlock GE (2015) Office chromatography: precise printing of sample solutions onminiaturized thin-layer phases and utilization for scanning direct analysis in real time mass spectrometry. J Chromatogr A 1413:127–134

    Article  Google Scholar 

  26. Meisen I, Wisholzer S, Soltwisch J, Dreisewerd K, Mormann M, Müthing J, Karch H, Friedrich AW (2010) Normal silica gel and reversed phase thin-layer chromatography coupled with UV spectroscopy and IR-MALDI-o-TOF-MS for the detection of tetracycline antibiotics. Anal Bioanal Chem 398:2821–2831. https://doi.org/10.1007/s00216-010-4135-4

    Article  CAS  PubMed  Google Scholar 

  27. Mroczek T (2009) Highly efficient, selective and sensitive molecular screening of acetylcholinesterase inhibitors of natural origin by solid-phase extraction-liquid chromatography/electrospray ionisation-octopole-orthogonal acceleration time-of-flight-mass spectrometry and novel thin-layer chromatography-based bioautography. J Chromatogr A 1216(12):2519–2528. https://doi.org/10.1016/j.chroma.2009.01.061

    Article  CAS  PubMed  Google Scholar 

  28. Wiseman JM, Li JB (2010) Elution, partial separation, and identification of lipids directly from tissue slices on planar chromatography media by desorption electrospray ionization mass spectrometry. Anal Chem 82(21):8866–8874. https://doi.org/10.1021/ac1016453

    Article  CAS  PubMed  Google Scholar 

  29. Srivastava M (ed) (2011) High-performance thin-layer chromatography (HPTLC), 1st edn. Springer, Berlin, Heidelberg

    Google Scholar 

  30. Danielson ND, Katon JE, Bouffard SP, Zhu Z (2002) Zirconium oxide stationary phase for thin-layer chromatography with diffuse reflectance Fourier transform infrared detection. Anal Chem 64:2183–2186

    Article  Google Scholar 

  31. Morlock GE, Schwack W (2010) Hyphenations in planar chromatography. J Chromatogr A 1217:6600–6609

    Article  CAS  Google Scholar 

  32. Sherma J (2010) Planar chromatography. Anal Chem. https://doi.org/10.1021/ac902643v

    Article  PubMed  Google Scholar 

  33. Bai X, Lee HJ, Rossier JS, Reymond F, Schafer H, Wossner M, Girault HH (2002) Pressure pinched injection of nanolitre volumes in planar micro-analytical devices. Lab Chip 2:45–49. https://doi.org/10.1039/B109247B

    Article  CAS  PubMed  Google Scholar 

  34. Hałka-Grysińska A, Skop K, Klimek-Turek A, Gorzkowska M, Dzido TH (2018) Thin-layer chromatogram development with a moving pipette delivering the mobile phase onto the surface of the adsorbent layer. J Chromatogr A 1575:91–99. https://doi.org/10.1016/j.chroma.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  35. Płocharz PW, Dzido TH, Ślązak P, Jóźwiak GW, Torbicz A (2007) Influence of sample application mode on performance of pressurized planar electrochromatography in completely closed system. J Chromatogr A 1170:91–100

    Article  Google Scholar 

Download references

Funding

This study was funded by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Hałka-Grysińska.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hałka-Grysińska, A., Kardasz, A. & Dzido, T.H. Influence of starting zone on the efficiency of micro-thin-layer chromatography with controlled mobile phase flow rate. JPC-J Planar Chromat 35, 243–250 (2022). https://doi.org/10.1007/s00764-022-00184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-022-00184-2

Keywords

Navigation