Skip to main content

Abstract

Pasteur introduced two techniques to separate enantiomers. The common visual imagery is that of the first technique, which pertains to the use of tweezers to separate the mirror image crystals of a tartaric acid salt. A second method discovered thereafter, not restricted to the conglomerates necessary for the tweezer approach, is diastereomeric resolution. In this chapter, a short discussion is given of the basic principles of diastereomeric resolutions followed by short analysis of Dutch Resolution, a method based on the use of families of resolving agents. The role of specific nucleation inhibition is discussed. Attention is then turned to conglomerates. Preferential crystallisation is discussed briefly. Particular attention is paid to the discovery of near-equilibrium methods to separate (racemisable) conglomerates by employment of constant attrition of the growing crystals. This methodology has been extended to preparation of the chiral components of some major drugs, and the methodology has also been adapted to separation of non-racemisable conglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For cogent summaries of the Pasteur story, see [3, 4]. For a discussion of the behaviour of the Pasteur salt, see [5].

  2. 2.

    A recently published organic textbook with an alternative approach continues to emphasise this story with enthusiasm [6]. As do more classical texts, see, for example, Vollhardt and Schore [7]. For a discussion of the value of visual images in a modern historical different context, see Synder and Judt [8].

  3. 3.

    Undoubtedly, the best general discussion of diastereomeric resolutions and related matters including the history is that of Jacques et al. [12].

  4. 4.

    For a brief and clear discussion of Ostwald ripening and the Gibbs-Thompson effect, see Mullin [13] and Ostwald Ripening [14]. The Ostwald rule of stages, namely, attainment of the final crystal form through a sequence of transient metastable states, is a related, but different, phenomenon; see also Mullin [13]; for a dramatic illustration of Ostwald ripening in the form of huge crystals, see [15], for information about the huge CaSO4°2H2O crystals found in this cave in Mexico, which illustrate dramatically Ostwald ripening.

  5. 5.

    For an extremely early report on the problem of reaching equilibrium during crystallisation, see van’t Hoff [16].

  6. 6.

    For a general discussion of this problem and resolutions in general, see Kellogg and Leeman [24].

  7. 7.

    For an excellent tutorial on use and significance of phase diagrams, see Coquerel [29]; for an older, but excellent, discussion of the basics of the use of phase diagrams, see Jacques et al. [12, 9]. A very detailed discussion of phase diagrams and manner of presentation is given [30].

  8. 8.

    A particularly interesting new development is the Pasteurian resolution of trans-1,2-diaminocyclohexane on the surface of highly organised pyrolytic graphite (HOPG). It is clear that the concept of diastereomeric resolution can clearly be extended to two dimensional surfaces [38].

  9. 9.

    The left-handed and colour-blind author of this chapter confesses to bias with regard to this subject. These “significant minority” afflictions are frequently found together; see, for example, [41].

  10. 10.

    For a cogent discussion of reflection symmetry breaking in general and application to liquid crystals in particular, see Walba [44].

  11. 11.

    For a recent reference and compilation of much earlier work, see Stöhr et al. [49].

  12. 12.

    (S)-clopidogrel (Plavix) is a platelet aggregation inhibitor and is used for treatment of ischemic strokes, heart attacks and atherosclerosis as well as for prevention of thrombosis after placement of intracoronary artery stents. The market was reported to be $9.3 billion in 2010.

  13. 13.

    For a discussion of how Ostwald ripening could work and operate in attrition induced deracemisation, see McLaughlin et al. [74].

  14. 14.

    The following is a non-exhaustive list of articles on the possible mechanism of deracemisation whereby cluster forming is essential [7783].

  15. 15.

    For an opposing view, see [84, 85] and references contained therein.

  16. 16.

    The mechanism of chiral growth of crystals of NaClO3, NaBrO3 and threonine has recently been investigated by use of dyes [86].

References

  1. L. Pasteur, C. R. Acad. Sci. 37, 163 (1853)

    Google Scholar 

  2. L. Pasteur, Ann. Chim. (Paris), 3, 38, 437 (1853)

    Google Scholar 

  3. D.M. Walba, Topics in Stereochemistry, 24, 457–518, ref 18 (2003)

    Google Scholar 

  4. http://www.foundersofscience.net/

  5. M.N. Petit, G. Coquerel, Mendeleev Commun. 13, 95 (2003)

    Article  Google Scholar 

  6. M.M. Green, Organic Chemistry Principles in Context (ScienceFromAway Publishing, New York, 2012), pp. 28–29

    Google Scholar 

  7. K.P.C. Vollhardt, N.E. Schore, Organic Chemistry: Structure and Function, 4th edn. (W.H. Freeman, New York, 2003), p. 183

    Google Scholar 

  8. T. Synder, T. Judt, Thinking the Twentieth Century (Vintage, London, 2013)

    Google Scholar 

  9. E.L. Eliel, S.H. Wilen, L.N. Mander (in part), Stereochemistry of Organic Compounds (John Wiley and Sons, New York, 1994), p. 1205

    Google Scholar 

  10. J. Jacques, M. Leclercq, M.J. Brienne, Tetrahedron 37, 1727–1733 (1981)

    Article  CAS  Google Scholar 

  11. R.A. Sheldon, Industrial Synthesis of Optically Active Compounds (M. Dekker, Inc., New York, 1993), pp. 173–204

    Google Scholar 

  12. J. Jacques, A. Collet, S.H. Wilen, Enantiomers, Racemates, and Resolutions (Krieger Publications, Malabar, 1994)

    Google Scholar 

  13. J.W. Mullin, Crystallization, 4th edn. (Elsevier, Amsterdam, 2001), p. 109

    Google Scholar 

  14. Ostwald Ripening, pp. 320–322, ref 13

    Google Scholar 

  15. http://en.wikipedia.org/wiki/Cave_of_the_Crystals

  16. J.H. van’t Hoff, Physical Chemistry in the Service of Science (University Press, Chicago, 1903), p. 116; cited in ref. 7

    Google Scholar 

  17. R. Yoshioka, H. Hiramatsu, K. Okamura, I. Tsujioka, S.-I. Yamada, J. Chem. Soc. Perkin Trans. 2, 2121–2128 (2000)

    Article  Google Scholar 

  18. W.J. Pope, S.J. Peachey, J. Chem. Soc. 101, 1066 (1912)

    Google Scholar 

  19. E. Fogassy, A. Lopata, F. Faigl, F. Darvas, M. Ács, L. Toke, Tetrahedron Lett. 21, 647 (1980)

    Article  CAS  Google Scholar 

  20. L. Wang, J. Shen, Y. Tang, Y. Chen, W. Wang, Z. Cai, Z. Du, Org. Process Res. Dev. 11, 487 (2007)

    Article  CAS  Google Scholar 

  21. Teva Pharmaceutical Industries, U.S. Patent 6,800,759, 2004

    Google Scholar 

  22. Teva Pharmaceutical Industries, U.S. Patent 4,847,265, 1989

    Google Scholar 

  23. USV Ltd., U.S. Patent 6,074,242, 2006

    Google Scholar 

  24. R.M. Kellogg, M.S. Leeman, Crystallization as a Tool in Industrial Applications of Asymmetric Synthesis, Comprehensive Chirality, 1st edn, ed. by E.M. Carreira, H. Yamamoto (Elsevier, New York, 2012), 9.16, pp. 367–399

    Google Scholar 

  25. Y. Kitamoto, K. Suzuki, N. Morohashi, K. Sakai, T. Hattori, J. Org. Chem. 78, 597–605 (2013)

    Article  CAS  Google Scholar 

  26. M. Schmitt, D. Schollmeyer, S. Waldvogel, Eur. J. Org. Chem. doi:10.1002/ejoc.201301566

  27. H. Lorenz, A. Seidel-Morgenstern, Angew. Chem. Int. Ed. 53, 1218–1251 (2014)

    Article  CAS  Google Scholar 

  28. X.-C. He, C.-Y. Qi, Chin. J. Chem. 25, 583–586 (2007)

    Article  CAS  Google Scholar 

  29. G. Coquerel, Chem. Soc. Rev. 43, 2286–2300 (2014)

    Article  CAS  Google Scholar 

  30. PhD thesis of F. Queniard, which is available via http://tel.archives-ouvertes.fr/

  31. T. Vries, H. Wynberg, E. van Echten, J. Koek, W. ten Hoeve, R.M. Kellogg, Q.B. Broxterman, A. Minnaard, B. Kaptein, S. van der Sluis, L. Hulshof, J. Kooistra, Angew. Chem. Int. Ed. 37, 2349 (1998)

    Article  CAS  Google Scholar 

  32. R.M. Kellogg, J.W. Nieuwenhuijzen, K. Pouwer, T.R. Vries, Q.B. Broxterman, R.F.P. Grimbergen, B. Kaptein, R.M. La Crois, E. de Wever, K. Zwaagstra, A.C. van der Laan, Synthesis 10, 1626 (2003)

    Article  Google Scholar 

  33. R.M. Kellogg, B. Kaptein, T.R. Vries, Top. Curr. Chem. 269, 159 (2007)

    Article  CAS  Google Scholar 

  34. M. Leeman, G. Brasile, E. Gelens, T.R. Vries, B. Kaptein, R.M. Kellogg, Angew. Chem. Int. Ed. 47, 1287 (2008)

    Article  CAS  Google Scholar 

  35. J.W. Nieuwenhuizen, R.F.P. Grimbergen, C. Koopman, R.M. Kellogg, T.R. Vries, K. Pouwer, E. van Echten, B. Kaptein, L.A. Hulshof, Q.B. Broxterman, Angew. Chem. Int. Ed. 41, 4281 (2002)

    Article  Google Scholar 

  36. J. Dalmolen, M. van der Sluis, J.W. Nieuwenhuijzen, M. van der Sluis, E. van Echten, T.R. Vries, B. Kaptein, Q.B. Broxterman, Chem. Eur. J. 11, 5619 (2005)

    Article  Google Scholar 

  37. C. Gervais, R.F.P. Grimbergen, I. Markovits, G.J.A. Ariaans, B. Kaptein, A. Bruggink, Q.B. Broxterman, J. Am. Chem. Soc. 126, 655 (2004)

    Article  CAS  Google Scholar 

  38. H. Xu, W.J. Saletra, P. Lavicoli, B. Van Averbeke, E. Ghijsens, K.S. Mali, A.P.H.J. Schenning, D. Beljonne, R. Lazzaroni, D.B. Amabilino, S. DeFeyter, Angew. Chem. Int. Ed. 51, 11981–11985 (2012)

    Article  CAS  Google Scholar 

  39. R. Tamura, H. Takahashi, D. Fujimoto, T. Ushio, Top. Curr. Chem. 269, 53–82 (2007)

    Article  CAS  Google Scholar 

  40. R.G. Gonnade, S. Iwama, R. Sujiwake, K. Manoj, H. Takahashi, H. Tsue, R. Tamura, Chem. Commun. 48, 2791–2793 (2012)

    Article  CAS  Google Scholar 

  41. http://www.thomhartmann.com/users/natural-lefty/blog/2013/06/toward-more-balanced-world-instead-one-tilts-right

  42. Y. Shen, C.-F. Chen, Chem. Rev. 112, 1463–1535 (2012)

    Article  CAS  Google Scholar 

  43. D.R. Link, G. Natale, R. Shao, J.E. Maclennan, N.A. Clark, E. Körblova, D.M. Walba, Science 278, 1924–1927 (1997)

    Article  CAS  Google Scholar 

  44. D.M. Walba, Top. Stereochem. 24, 457–518 (2003)

    CAS  Google Scholar 

  45. K. Zhao, R. Bruinsma, T.G. Mason, Nat. Commun. (2012). doi:10.1038/ncomms1803

    Google Scholar 

  46. B. Bergersen, D. Boal, P. Palffy-Muhoray, J. Phys. A Math. Gen. 27, 2579–2586 (1994)

    Article  Google Scholar 

  47. G.T. Pickett, M. Gross, H. Okuyama, Phys. Rev. Lett. 85, 3652–3655 (2000)

    Article  CAS  Google Scholar 

  48. J. Lin, Z. Guo, J. Plas, D.B. Amabilino, S. De Feyter, A.P.H. Schenning, Chem. Commun. 49, 9320–9322 (2013)

    Article  CAS  Google Scholar 

  49. M. Stöhr et al., Angew. Chem. Int. Ed. 50, 9982–9986 (2011)

    Article  Google Scholar 

  50. D. Erdemir, A.Y. Lee, A.S. Meyerson, Acc. Chem. Res. 42, 621–629 (2009)

    Article  CAS  Google Scholar 

  51. R.J. Davey, S.L.M. Schroeder, J.H. ter Horst, Angew. Chem. Int. Ed. 52, 2166–2179 (2013)

    Article  CAS  Google Scholar 

  52. P.R. ten Wolde, D. Frenkel, Science 277, 1975–1978 (1997)

    Article  Google Scholar 

  53. P.G. Vekilov, Cryst. Growth Des. 10, 5007–5019 (2010)

    Article  CAS  Google Scholar 

  54. S. Chattopadhyay, D. Erdemir, J.M.B. Evans, J. Ilavsky, H. Amenitsch, C.U. Segre, A.S. Myerson, Cryst. Growth Des. 5, 523–527 (2005)

    Article  CAS  Google Scholar 

  55. A.F. Wallace, L.O. Hedges, A. Fernandez-Martinez, P. Raiteri, J.D. Gale, G.A. Waychunas, S. Whitelam, J.F. Banfield, J.J. De Yoreo, Science 341, 885–889 (2013)

    Article  CAS  Google Scholar 

  56. A.S. Meyerson, B.L. Trout, Science 341, 855–856 (2013)

    Article  Google Scholar 

  57. M.H. Nielsen, S. Aloni, J.J. De Yoreo, Science 345, 1158–1162 (2014)

    Article  CAS  Google Scholar 

  58. C. Viedma, Phys. Rev. Lett. 94, 065504 (2005)

    Article  Google Scholar 

  59. C. Viedma, Cryst. Growth Des. 7, 553–556 (2007)

    Article  CAS  Google Scholar 

  60. W.K. Rybak, Tetrahedron Asymmetry 19, 2234–2239 (2008)

    Article  CAS  Google Scholar 

  61. T. Ezuhara, K. Endo, Y. Aoyama, J. Am. Chem. Soc. 121, 3279–3283 (1999)

    Article  CAS  Google Scholar 

  62. W.L. Noorduin, A. Izumi, M. Millemaggi, M. Leeman, H. Meekens, W.J.P. van Enckevort, R.M. Kellogg, B. Kaptein, E. Vlieg, D.G. Blackmond, J. Am. Chem. Soc. 130, 1158–1159 (2008)

    Article  CAS  Google Scholar 

  63. W.L. Noorduin, A.A.C. Bode, M. van der Meijden, H. Meekes, A.F. van Etteger, W.J.P. van Enckevort, P.C.M. Christianen, B. Kaptein, R.M. Kellogg, T. Rasing, E. Vlieg, Nat. Chem. 2, 729 (2009)

    Article  Google Scholar 

  64. W.L. Noorduin, B. Kaptein, H. Meekes, W.J.P. van Enckevort, R.M. Kellogg, E. Vlieg, Angew. Chem. Int. Ed. 48, 4581–4583 (2009)

    Article  CAS  Google Scholar 

  65. M.W. van der Meijden, M. Leeman, E. Gelens, W.L. Noorduin, H. Meekes, W.J.P. van Enckevort, B. Kaptein, E. Vlieg, R.M. Kellogg, Org. Process Res. Dev. 13, 1195 (2009)

    Article  Google Scholar 

  66. W.L. van der Noorduin, P. Asdonk, A.A.C. Bode, H. Meekes, W.J.P. van Enckevort, E. Vlieg, B. Kaptein, M.W. van der Meijden, R.M. Kellogg, G. Deroover, Org. Process Res. Dev. 14, 908–911 (2010)

    Article  CAS  Google Scholar 

  67. P. Wilmink, C. Rougeot, K. Wurst, M. van der Meijden, W. Saletra, G. Coquerel, R.M. Kellogg, Org. Process Res. Dev. doi:10.1021/op500352m

  68. J.A. Jakubowski, C.D. Payne, J.T. Brandt, G.J. Weerakkody, N.A. Farid, D.S. Small, H. Naganuma, G.Y. Li, K.J. Winters, J. Cardiovasc. Pharmacol. 47, 377–384 (2006)

    CAS  Google Scholar 

  69. D.T. McLaughlin, T.P.T. Nguyen, L. Mengnjo, C. Bian, Y.H. Leung, E. Goodellow, P. Ramrup, S. Woo, L.A. Cuccia, Cryst. Growth Des. 14, 1067–1076 (2014)

    Article  CAS  Google Scholar 

  70. C. Viedma, J.E. Ortiz, T. De Torres, T. Izumi, D.G. Blackmond, J. Am. Chem. Soc. 130, 15274–15275 (2008)

    Article  CAS  Google Scholar 

  71. S. Wei, M. Mauksch, S.B. Tsogoeva, Chem. Eur. J. 15, 10255 (2009)

    Article  CAS  Google Scholar 

  72. S.V. Tsogoeva, S. Wei, M. Freund, M. Mauksch, Angew. Chem. Int. Ed. 48, 590–594 (2009)

    Article  CAS  Google Scholar 

  73. A.M. Flock, C.M.M. Reucher, C. Bolm, Chem. Eur. J. 16, 3918 (2010)

    Article  CAS  Google Scholar 

  74. W.L. Noorduin, E. Vlieg, R.M. Kellogg, B. Kaptein, Angew. Chem. Int. Ed. 48, 9600–9606 (2009)

    Article  CAS  Google Scholar 

  75. W. Meyerhoffer, Ber. Dtsch. Chem. Ges. 37, 2604 (1904)

    Article  CAS  Google Scholar 

  76. M. Klussmann, S.P. Mathew, H. Iwamura, D.H. Wells Jr., A. Armstrong, D.G. Blackmond, Angew. Chem. Int. Ed. 45, 7989 (2006)

    Article  CAS  Google Scholar 

  77. M. Klussmann, A.J.P. White, A. Armstrong, D.G. Blackmond et al., Angew. Chem. Int. Ed. 45, 7985 (2006)

    Article  Google Scholar 

  78. M. Uhawa, J. Phys. Soc. Jpn. 73, 2601–2603 (2004)

    Article  Google Scholar 

  79. M. Uwaha, K. Koyama, J. Cryst. Growth 312, 1046–1054 (2010)

    Article  CAS  Google Scholar 

  80. W.L. Noorduin, W.J. van Enckevort, H. Meekes, B. Kaptein, R.M. Kellogg, J.C. Tully, J.M. McBride, E. Vlieg, Angew. Chem. Int. Ed. 49, 8435–8438 (2010)

    Article  CAS  Google Scholar 

  81. C. Blanco, J. Crusats, Z. El-Hachemi, A. Moyano, S. Veintemillas-Verdaguer, D. Hochberg, J. Ribó, ChemPhysChem 14, 3982–3993 (2013)

    Google Scholar 

  82. M. Iggland, M. Mazzotti, Cryst. Growth Des. 11, 4611–4622 (2011)

    Article  CAS  Google Scholar 

  83. F. Ricci, F.H. Stillinger, P.G. Debenedetti, J. Chem. Phys. 139, 174503 (2013)

    Article  Google Scholar 

  84. C. Viedma, B.J.V. Verhuijl, J.E. Ortiz, T. de Torres, R.M. Kellogg, D.G. Blackmond, Chem. Eur. J. 16, 4932–4937 (2010)

    Article  CAS  Google Scholar 

  85. D. Gherase, D. Conroy, O.K. Matar, D.G. Blackmond, Cryst. Growth Des. 14, 928–937 (2014)

    Article  CAS  Google Scholar 

  86. C. Viedma, J.M. McBride, B. Kahr, P. Cintas, Angew. Chem. Int. Ed. 52, 10545–10548 (2013)

    Article  CAS  Google Scholar 

  87. J.E. Hein, B.H. Cao, C. Viedma, R.M. Kellogg, D.G. Blackmond, J. Am. Chem. Soc. 134, 12629–12636 (2012)

    Article  CAS  Google Scholar 

  88. J.E. Hein, B.H. Cao, M.W. van der Meijden, M. Leeman, R.M. Kellogg, Org. Process Res. Dev. 17, 946–950 (2013)

    Article  CAS  Google Scholar 

  89. G. Coquerel, M.N. Petit, G. Tauvel, U.S. Patent 2009/0124811 A1 (2009)

    Google Scholar 

  90. L. Spix, H. Meekes, R.H. Blauw, W.J.P. van Enckevort, E. Vlieg, Cryst. Growth Des. 12, 5769–5799 (2012)

    Article  Google Scholar 

  91. L. Spix, A. Alring, H. Meekes, W.J.P.van Enckevort, E. Vlieg, Cryst. Growth Des. dx.doi.org/10.1021/cg4018882

  92. R.R.E. Steendam, M.C.T. Brouwer, E.M.E. Huijs, M.W. Kulka, H. Meekes, W.J.P. van Enckevort, J. Raap, F.P.J.T. Rutjes, E. Vlieg, Chem. Eur. J. 20, 13527–13530 (2014)

    Article  CAS  Google Scholar 

  93. I. Weissbuch, M. Lahav, Chem. Rev. 111, 3236–3267 (2011)

    Article  CAS  Google Scholar 

  94. R.R.E. Steendam, J.M.M. Verkade, T.J.B. van Benthem, H. Meekes, W.J.P. van Enckevort, J. Raap, F.P.J.T. Rutjes, E. Vlieg, Nat. Comm. doi:10.1038/ncomms6543

  95. K. Suwannasang, A.E. Flood, C. Rougeot, G. Coquerel, Cryst. Growth Des. 13, 3498–3504 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Kellogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kellogg, R.M. (2015). How to Use Pasteur’s Tweezers. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_21

Download citation

Publish with us

Policies and ethics