Skip to main content

Advertisement

Log in

Ameliorative effects of taurine against diabetes: a review

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Diets in rats and humans have shown promising results. Taurine improved glucagon activity, promoted glycemic stability, modified glucose levels, successfully addressed hyperglycemia via advanced glycation end-product control, improved insulin secretion and had a beneficial effect on insulin resistance. Taurine treatment performed well against oxidative stress in brain, increased the secretion of required hormones and protected against neuropathy, retinopathy and nephropathy in diabetes compared with the control. Taurine has been observed to be effective in treatments against diabetic hepatotoxicity, vascular problems and heart injury in diabetes. Taurine was shown to be effective against oxidative stress. The mechanism of action of taurine cannot be explained by one pathway, as it has many effects. Several of the pathways are the advanced glycation end-product pathway, PI3-kinase/AKT pathway and mitochondrial apoptosis pathway. The worldwide threat of diabetes underscores the urgent need for novel therapeutic measures against this disorder. Taurine (2-aminoethane sulfonic acid) is a natural compound that has been studied in diabetes and diabetes-induced complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

Tau:

Taurine

LP:

Low protein

OLETF:

Long–Evans Tokushima fatty

References

  • Abebe W (2008) Effects of taurine on the reactivity of aortas from diabetic rats. Life Sci 82:279–289

    Article  CAS  PubMed  Google Scholar 

  • Aerts L, van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30:281–286

    Article  CAS  PubMed  Google Scholar 

  • Agca CA, Tuzcu M, Hayirli A, Sahin K (2014) Taurine ameliorates neuropathy via regulating NF-κB and Nrf2/HO-1 signaling cascades in diabetic rats. Food Chem Toxicol 71:116–121

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N (2005) Advanced glycation end products—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  PubMed  Google Scholar 

  • Alvarado-Vásquez N, Zamudio P, Cerón E, Vanda B, Zenteno E, Carvajal-Sandoval G (2003) Effect of glycine in streptozotocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 134:521–527

    Article  PubMed  CAS  Google Scholar 

  • Ansar S, Koska J, Reaven PD (2011) Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol 10:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthrayose C, Shashidhar S (2004) Studies on protein and taurine in normal, senile and diabetic cataractous human lenses. Indian J Physiol Pharmacol 48:357–360

    CAS  PubMed  Google Scholar 

  • Anupama V, Narmadha R, Gopalakrishnan V, Devaki K (2012) Enzymatic alteration in the vital organs of streptozotocin diabetic rats treated with aqueous extract of Erythrina variegata bark. Int J Pharm Pharm Sci 4:134–147

    Google Scholar 

  • Arrick DM, Sun H, Patel KP, Mayhan WG (2011) Chronic resveratrol treatment restores vascular responsiveness of cerebral arterioles in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 301:H696–H703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askwith T, Zeng W, Eggo MC, Stevens MJ (2009) Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: implications for pathogenesis of diabetic neuropathy. Am J Physiol Endocrinol Metab 297:E620–E628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahmani M, Zargaran A, Rafieian-Kopaei M, Saki K (2014) Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac J Trop Med 7:S348–S354

    Article  Google Scholar 

  • Batista TM, Ribeiro RA, da Silva PM, Camargo RL, Lollo PC, Boschero AC, Carneiro EM (2013) Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res 57:423–434

    Article  CAS  PubMed  Google Scholar 

  • Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  • Benson J, Masor M (1994) Infant formula development: past, present and future. Endocr Regul 28:9–16

    CAS  PubMed  Google Scholar 

  • Bessho M, Murase-Mishiba Y, Imagawa A, Terasaki J, Hanafusa T (2014) Possible contribution of taurine to distorted glucagon secretion in intra-islet insulin deficiency: a metabolome analysis using a novel α-cell model of insulin-deficient diabetes. PLoS One 9:e113254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya S, Manna P, Gachhui R, Sil PC (2011) d-Saccharic acid-1, 4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway. Toxicol Appl Pharmacol 257:272–283

    Article  CAS  PubMed  Google Scholar 

  • Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Cain K, Bratton SB, Cohen GM (2002) The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84:203–214

    Article  CAS  PubMed  Google Scholar 

  • Caletti G, Almeida FB, Agnes G, Nin MS, Barros HMT, Gomez R (2015) Antidepressant dose of taurine increases mRNA expression of GABA A receptor α 2 subunit and BDNF in the hippocampus of diabetic rats. Behav Brain Res 283:11–15

    Article  CAS  PubMed  Google Scholar 

  • Casey RG, Gang C, Joyce M, Bouchier-Hayes DJ (2007) Taurine attenuates acute hyperglycaemia-induced endothelial cell apoptosis, leucocyte-endothelial cell interactions and cardiac dysfunction. J Vasc Res 44:31–39

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49:27–29

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Jackson EB, Ramana KV, Kelley R, Srivastava SK, Bhatnagar A (2002) Nitric oxide prevents aldose reductase activation and sorbitol accumulation during diabetes. Diabetes 51:3095–3101

    Article  CAS  PubMed  Google Scholar 

  • Chang K (2002) Effect of taurine and β-alanine on morphological changes of pancreas in streptozotocin-induced rats. Taurine 4:571–577

    Google Scholar 

  • Chauncey KB, Tenner TE, Lombardini JB, Jones BG, Brooks ML, Warner RD, Davis RL, Ragain RM (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Taurine 5. Springer, Boston, MA, pp 91–96

  • Cherif H, Reusens B, Dahri S, Remacle C, Hoet J (1996) Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol 151:501–506

    Article  CAS  PubMed  Google Scholar 

  • Chinenye S, Uloko AE, Ogbera AO, Ofoegbu EN, Fasanmade OA, Fasanmade AA, Ogbu OO (2012) Profile of Nigerians with diabetes mellitus-Diabcare Nigeria study group (2008): results of a multicenter study. Indian J Endocrinol Metab 16:558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes. Diabetes 54:S97–S107

    Article  CAS  PubMed  Google Scholar 

  • Control D, Group CT (1998) Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. Ann Intern Med 128:517–523

    Article  Google Scholar 

  • Das J, Sil PC (2012) Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids 43:1509–1523

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2008) Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology 15:181–190

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010a) Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res 44:340–355

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010b) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCδ-JNK pathway. PLoS One 5:e12602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010c) Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology 269:24–34

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81:891–909

    Article  CAS  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2012a) Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids 42:1839–1855

    Article  CAS  PubMed  Google Scholar 

  • Das J, Vasan V, Sil PC (2012b) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258:296–308

    Article  CAS  PubMed  Google Scholar 

  • de la Puerta C, Arrieta F, Balsa J, Botella-Carretero J, Zamarrón I, Vázquez C (2010) Taurina y metabolismo de la glucosa: unarevisión. Nutrición Hospitalaria 25:910–919

    PubMed  Google Scholar 

  • de Luca G, Calpona P, Caponetti A, Romano G, di Benedetto A, Cucinotta D, di Giorgio R (2001) Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism 50:60–64

    Article  PubMed  Google Scholar 

  • de Luca A, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 13:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devamanoharan P, Ali A, Varma S (1997a) Oxidative stress to rat lens in vitro: protection by taurine. Free Radic Res 29:189–195

    Article  Google Scholar 

  • Devamanoharan P, Ali A, Varma S (1997b) Prevention of lens protein glycation by taurine. Mol Cell Biochem 177:245–250

    Article  CAS  PubMed  Google Scholar 

  • di Leo M, Santini SA, Cercone S, Lepore D, Silveri NG, Caputo S, Greco AV, Giardina B, Franconi F, Ghirlanda G (2002) Chronic taurine supplementation ameliorates oxidative stress and Na+ K+ ATPase impairment in the retina of diabetic rats. Amino Acids 23:401–406

    Article  PubMed  CAS  Google Scholar 

  • di Leo MA, Ghirlanda G, Silveri NG, Giardina B, Franconi F, Santini SA (2003) Potential therapeutic effect of antioxidants in experimental diabetic retina: a comparison between chronic taurine and vitamin E plus selenium supplementations. Free Radic Res 37:323–330

    Article  PubMed  CAS  Google Scholar 

  • di Wu Q, Wang JH, Fennessy F, Redmond HP, Bouchier-Hayes D (1999) Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am J Physiol Cell Physiol 277:C1229–C1238

    Article  CAS  Google Scholar 

  • Eizirik DL, Darville MI (2001) beta-cell apoptosis and defense mechanisms: lessons from type 1 diabetes. Diabetes 50:S64

    Article  CAS  PubMed  Google Scholar 

  • el Mesallamy HO, El-Demerdash E, Hammad LN, el Magdoub HM (2010) Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetol Metab Syndr 2:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elizarova E, Nedosugova L (1996) First experiments in taurine administration for diabetes mellitus. In: Taurine 2. Springer, Boston, MA, pp 583–588

    Chapter  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622

    Article  CAS  PubMed  Google Scholar 

  • Fatma El Zahraa Z, Mahmoud MF, El Maraghy NN, Ahmed AF (2012) Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food Chem Toxicol 50:1159–1165

    Article  CAS  Google Scholar 

  • Fennessy F, Moneley D, Wang J, Kelly C, Bouchier-Hayes D (2003) Taurine and vitamin C modify monocyte and endothelial dysfunction in young smokers. Circulation 107:410–415

    Article  CAS  PubMed  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, Gironi A, Anichini R, Seghieri G (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61:1115–1119

    Article  CAS  PubMed  Google Scholar 

  • Franconi F, di Leo MA, Bennardini F, Ghirlanda G (2004) Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem Res 29:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ghosh J, Das J, Manna P, Sil PC (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-κB, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240:73–87

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG (2003) N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 285:E744–E753

    Article  CAS  PubMed  Google Scholar 

  • Han J, Bae JH, Kim S-Y, Lee H-Y, Jang B-C, Lee I-K, Cho C-H, Lim J-G, Suh S-I, Kwon T-K (2004) Taurine increases glucose sensitivity of UCP2-overexpressing β-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab 287:E1008–E1018

    Article  CAS  PubMed  Google Scholar 

  • Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346

    Article  CAS  PubMed  Google Scholar 

  • Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N (2010) A role for taurine in mitochondrial function. J Biomed Sci 17:S23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison SA (2006) Liver disease in patients with diabetes mellitus. J Clin Gastroenterol 40:68–76

    Article  PubMed  Google Scholar 

  • Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochimicaet Biophysica Acta (BBA) Bioenergetics 1504:196–219

    Article  CAS  Google Scholar 

  • Hayes K, Pronczuk A, Addesa A, Stephan Z (1989) Taurine modulates platelet aggregation in cats and humans. Am J Clin Nutr 49:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Higo S, Miyata S, Jiang Q, Kitazawa R, Kitazawa S, Kasuga M (2008) Taurine administration after appearance of proteinuria retards progression of diabetic nephropathy in rats. Kobe J Med Sci 54:E35–E45

    PubMed  Google Scholar 

  • Hisashi T, Yukio Y, Kinya K (1979) Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochem Pharmacol 28:2807–2811

    Article  Google Scholar 

  • Hizoh I, Haller C (2002) Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Investig Radiol 37:428–434

    Article  Google Scholar 

  • Hoogwerf BJ, Sferra J, Donley BG (2006) Diabetes mellitus—overview. Foot Ankle Clin 11:703–715

    Article  PubMed  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  • Huang J-S, Chuang L-Y, Guh J-Y, Huang Y-J, Hsu M-S (2007) Antioxidants attenuate high glucose-induced hypertrophic growth in renal tubular epithelial cells. Am J Physiol Ren Physiol 293:F1072–F1082

    Article  CAS  Google Scholar 

  • Huang J-S, Chuang L-Y, Guh J-Y, Yang Y-L, Hsu M-S (2008) Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells. Toxicol Appl Pharmacol 233:220–226

    Article  CAS  PubMed  Google Scholar 

  • Huang J-S, Chuang L-Y, Guh J-Y, Huang Y-J (2009) Effects of nitric oxide and antioxidants on advanced glycation end products-induced hypertrophic growth in human renal tubular cells. Toxicol Sci 111:109–119

    Article  CAS  PubMed  Google Scholar 

  • Huxtable R (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    Article  CAS  PubMed  Google Scholar 

  • Huxtable R (2002) Expanding the circle 1975–1999: sulfur biochemistry and insights on the biological functions of taurins. Taurine 4:1–25

    Google Scholar 

  • Huxtable R, Bressler R (1974) Taurine concentrations in congestive heart failure. Science 184:1187–1188

    Article  CAS  PubMed  Google Scholar 

  • Ikubo N, Saito M, Tsounapi P, Dimitriadis F, Ohmasa F, Inoue S, Shimizu S, Kinoshita Y, Satoh K (2011) Protective effect of taurine on diabetic rat endothelial dysfunction. Biomed Res 32:187–193

    Article  CAS  PubMed  Google Scholar 

  • Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 51:2005–2011

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H (2000) Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol 15:718–724

    Article  CAS  PubMed  Google Scholar 

  • Jeong I-K, King GL (2011) New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia. Diabetes Metab J 35:8–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamata K, Sugiura M, Kojima S, Kasuya Y (1996) Restoration of endothelium-dependent relaxation in both hypercholesterolemia and diabetes by chronic taurine. Eur J Pharmacol 303:47–53

    Article  CAS  PubMed  Google Scholar 

  • Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH (2007) Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56:930–939

    Article  CAS  PubMed  Google Scholar 

  • Kendler B (1996) Recent nutritional approaches to the prevention and therapy of cardiovascular disease. Prog Cardiovasc Nurs 12:3–23

    Google Scholar 

  • Kim S-J, Gupta RC, Lee HW (2007) Taurine-diabetes interaction: from involvement to protection. Curr Diabetes Rev 3:165–175

    Article  CAS  PubMed  Google Scholar 

  • Kim J-O, Lee G-D, Kwon J-H, Kim K-S (2009a) Anti-diabetic effects of new herbal formula in neonatally streptozotocin-induced diabetic rats. Biol Pharm Bull 32:421–426

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Lee SH, Song EH, Park YM, Lim J-Y, Kim DJ, Choi K-H, Park SI, Gao B, Kim W-H (2009b) A critical role of STAT1 in streptozotocin-induced diabetic liver injury in mice: controlled by ATF3. Cell Signal 21:1758–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Kim JY, Lee BG, You JS, Chang KJ, Chung H, Yoo MC, Yang H-I, Kang J-H, Hwang YC (2012) Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med 44:665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HY, Kim HV, Yoon JH, Kang BR, Cho SM, Lee S, Kim JY, Kim JW, Cho Y, Woo J (2014) Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease. Sci Rep 4:7467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • König M, Bulik S, Holzhütter H-G (2012) Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism. PLoS Comput Biol 8:e1002577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kontny E, Szczepańska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, Maśliński W (2000) The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol 43:2169–2177

    Article  CAS  Google Scholar 

  • Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838

    Article  CAS  PubMed  Google Scholar 

  • Kumari N, Prentice H, Wu J-Y (2013) Taurine and its neuroprotective role. In: Taurine 8. Springer, New York, NY, pp 19–27

    Chapter  Google Scholar 

  • Li C, Cao L, Zeng Q, Liu X, Zhang Y, Dai T, Hu D, Huang K, Wang Y, Wang X (2005a) Taurine may prevent diabetic rats from developing cardiomyopathy also by downregulating angiotensin II type2 receptor expression. Cardiovasc Drugs Ther 19:105–112

    Article  CAS  PubMed  Google Scholar 

  • Li F, Obrosova IG, Abatan O, Tian D, Larkin D, Stuenkel EL, Stevens MJ (2005b) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 288:E29–E36

    Article  CAS  PubMed  Google Scholar 

  • Li F, Abatan OI, Kim H, Burnett D, Larkin D, Obrosova IG, Stevens MJ (2006) Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats. Neurobiol Dis 22:669–676

    Article  CAS  PubMed  Google Scholar 

  • Lourenco R, Camilo M (2002) Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp 17:262–270

    CAS  PubMed  Google Scholar 

  • Malone JI, Lowitt S, Cook WR (1990) Nonosmotic diabetic cataracts. Pediatr Res 27:293–296

    Article  CAS  PubMed  Google Scholar 

  • Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, Diamond DM (2008) Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diabetes 9:531–539

    Article  PubMed  Google Scholar 

  • Mandrup-Poulsen T (2003) Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol 66:1433–1440

    Article  CAS  PubMed  Google Scholar 

  • Manna P, Sinha M, Sil P (2008a) Taurine triggers a chemoprevention against cadmium induced testicular oxidative injury. Reprod Toxicol 26:282–291

    Article  CAS  PubMed  Google Scholar 

  • Manna P, Sinha M, Sil PC (2008b) Amelioration of cadmium-induced cardiac impairment by taurine. Chem Biol Interact 174:88–97

    Article  CAS  PubMed  Google Scholar 

  • Manna P, Sinha M, Sil PC (2009) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36:417

    Article  CAS  PubMed  Google Scholar 

  • McCarty M (1999) The reported clinical utility of taurine in ischemic disorders may reflect a down-regulation of neutrophil activation and adhesion. Med Hypotheses 53:290–299

    Article  CAS  PubMed  Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease. Springer, Boston, MA, pp 105–125

    Chapter  Google Scholar 

  • Menzie J, Prentice H, Wu J-Y (2013) Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci 3:877–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merezak S, Hardikar A, Yajnik C, Remacle C, Reusens B (2001) Intrauterine low protein diet increases fetal beta-cell sensitivity to NO and IL-1 beta: the protective role of taurine. J Endocrinol 171:299–308

    Article  CAS  PubMed  Google Scholar 

  • Merheb M, Daher RT, Nasrallah M, Sabra R, Ziyadeh FN, Barada K (2007) Taurine intestinal absorption and renal excretion test in diabetic patients. Diabetes Care 30:2652–2654

    Article  PubMed  Google Scholar 

  • Militante JD, Lombardini JB, Schaffer SW (2000) The role of taurine in the pathogenesis of the cardiomyopathy of insulin-dependent diabetes mellitus. Cardiovasc Res 46:393–402

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki H, Takido J, Oda H, Yokogoshi H (1999) Improving effect of dietary taurine on marked hypercholesterolemia induced by a high-cholesterol diet in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 63:1984–1987

    Article  CAS  PubMed  Google Scholar 

  • Mohamed N, Gawad HA (2017) Taurine dietary supplementation attenuates brain, thyroid, testicular disturbances and oxidative stress in streptozotocin-induced diabetes mellitus in male rats. Beni-Suef Univ J Basic Appl Sci 6(3):247–252

    Article  Google Scholar 

  • Moloney MA, Casey RG, O’Donnell DH, Fitzgerald P, Thompson C, Bouchier-Hayes DJ (2010) Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diabetes Vasc Dis Res 7:300–310

    Article  Google Scholar 

  • Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932–939

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ushiyama C, Suzuki S, Shimada N, Ohmuro H, Ebihara I, Koide H (1999) Effects of taurine and vitamin E on microalbuminuria, plasma metalloproteinase-9, and serum type IV collagen concentrations in patients with diabetic nephropathy. Nephron 83:361–362

    Article  CAS  PubMed  Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka long-evans Tokushima fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71:54–58

    Article  CAS  PubMed  Google Scholar 

  • Nanami K, Oda H, Yokogoshi H (1996) Antihypercholesterolemic action of taurine on streptozotocin-diabetic rats or on rats fed a high cholesterol diet. In: Taurine 2. Springer, Boston, MA, pp 561–568

    Chapter  Google Scholar 

  • Nandhini TA, Anuradha CV (2003) Inhibition of lipid peroxidation, protein glycation and elevation of membrane ion pump activity by taurine in RBC exposed to high glucose. Clin Chim Acta 336:129–135

    Article  CAS  PubMed  Google Scholar 

  • Nandhini A, Thirunavukkarasu V, Anuradha C (2004) Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine. Acta Physiol 181:297–303

    Article  CAS  Google Scholar 

  • Nasri H, Rafieian-Kopaei M (2013) Tubular kidney protection by antioxidants. Iran J Public Health 42:1194

    PubMed  PubMed Central  Google Scholar 

  • Nasri H, Rafieian-Kopaei M (2014) Protective effects of herbal antioxidants on diabetic kidney disease. J Res Med Sci 19:82–83

    PubMed  PubMed Central  Google Scholar 

  • Norhammar A, Tenerz Å, Nilsson G, Hamsten A, Efendíc S, Rydén L, Malmberg K (2002) Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet 359:2140–2144

    Article  CAS  PubMed  Google Scholar 

  • Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obrosova IG, Stevens MJ (1999) Effect of dietary taurine supplementation on GSH and NAD (P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Investig Ophthalmol Vis Sci 40:680–688

    CAS  Google Scholar 

  • Obrosova I, Minchenko A, Marinescu V, Fathallah L, Kennedy A, Stockert C, Frank R, Stevens M (2001a) Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia 44:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Obrosova IG, Fathallah L, Stevens MJ (2001b) Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp Neurol 172:211–219

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T (1993) Reactivity of taurine with aldehydes and its physiological role. Chem Pharm Bull 41:2172–2175

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P (2007) Pharmacology of taurine. In: Proceedings-Western Pharmacology Society, 2007. [Western Pharmacology Society]; 1998, vol 8

  • Ojo O, Brooke J (2015) Evaluating the association between diabetes, cognitive decline and dementia. Int J Environ Res Public Health 12:8281–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M (2007) Free fatty acid-induced reduction in glucose-stimulated insulin secretion. Diabetes 56:2927–2937

    Article  CAS  PubMed  Google Scholar 

  • Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  CAS  Google Scholar 

  • Park S-H, Choi H-J, Lee J-H, Woo C-H, Kim J-H, Han H-J (2001) High glucose inhibits renal proximal tubule cell proliferation and involves PKC, oxidative stress, and TGF-β1. Kidney Int 59:1695–1705

    Article  CAS  PubMed  Google Scholar 

  • Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diabetes Rep 7:257–264

    Article  CAS  Google Scholar 

  • Pörksen S, Nielsen LB, Kaas A, Kocova M, Chiarelli F, Ørskov C, Holst JJ, Ploug KB, Hougaard P, Hansen L (2007) Meal-stimulated glucagon release is associated with postprandial blood glucose level and does not interfere with glycemic control in children and adolescents with new-onset type 1 diabetes. J Clin Endocrinol Metab 92:2910–2916

    Article  PubMed  CAS  Google Scholar 

  • Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA, Joles JA (2004) Perinatal l-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension 44:83–88

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Vannucci SJ, Yan SSD, Herold K, Yan SF, Schmidt AM (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R–28R

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Yan SF, Schmidt AM (2007) Arguing for the motion: yes, RAGE is a receptor for advanced glycation endproducts. Mol Nutr Food Res 51:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Rashid K, Bhattacharya S, Sil PC (2012) Protective role of d-saccharic acid-1, 4-lactone in alloxan induced oxidative stress in the spleen tissue of diabetic rats is mediated by suppressing mitochondria dependent apoptotic pathway. Free Radic Res 46:240–252

    Article  CAS  PubMed  Google Scholar 

  • Rashid K, Das J, Sil PC (2013) Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats. Food Chem Toxicol 51:317–329

    Article  CAS  PubMed  Google Scholar 

  • Reagan LP (2012) Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Exp Neurol 233:68–78

    Article  CAS  PubMed  Google Scholar 

  • Revsin Y, Rekers NV, Louwe MC, Saravia FE, de Nicola AF, de Kloet ER, Oitzl MS (2009) Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice. Neuropsychopharmacology 34:747–758

    Article  CAS  PubMed  Google Scholar 

  • Reynolds C, Molnar GD, Horwitz DL, Rubenstein AH, Taylor WF, Jiang N-S (1977) Abnormalities of endogenous glucagon and insulin in unstable diabetes. Diabetes 26:36–45

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RA, Bonfleur ML, Amaral AG, Vanzela EC, Rocco SA, Boschero AC, Carneiro EM (2009) Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets. Diabetes Metab Res Rev 25:370–379

    Article  CAS  PubMed  Google Scholar 

  • Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    Article  CAS  PubMed  Google Scholar 

  • Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R, Aleo MF (2012) ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res 318:238–250

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Sil PC (2012) Taurine protects murine hepatocytes against oxidative stress-induced apoptosis by tert-butyl hydroperoxide via PI3K/Akt and mitochondrial-dependent pathways. Food Chem 131:1086–1096

    Article  CAS  Google Scholar 

  • Roy A, Manna P, Sil PC (2009) Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/NF-κ B and mitochondria dependent pathways. Free Radic Res 43:995–1007

    Article  CAS  PubMed  Google Scholar 

  • Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, Jones RH, Marquez VE, Cairns W, Tadayyon M (2011) Maternal diet and aging alter the epigenetic control of a promoter–enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci 108:5449–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes this article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part Special Issue). Can J Physiol Pharmacol 87:91–99

    Article  CAS  PubMed  Google Scholar 

  • Schalkwijk CG, Ligtvoet N, Twaalfhoven H, Jager A, Blaauwgeers HG, Schlingemann RO, Tarnow L, Parving H-H, Stehouwer CD, van Hinsbergh VW (1999) Amadori albumin in type 1 diabetic patients: correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes 48:2446–2453

    Article  CAS  PubMed  Google Scholar 

  • Segal KR, Landt M, Klein S (1996) Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes 45:988–991

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj N, Bobby Z, Sathiyapriya V (2006) Effect of lipid peroxides and antioxidants on glycation of hemoglobin: an in vitro study on human erythrocytes. Clin Chim Acta 366:190–195

    Article  CAS  PubMed  Google Scholar 

  • Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, Goh EL (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS One 7:e42935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Investig 106:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siafarikas A, Johnston RJ, Bulsara MK, O’Leary P, Jones TW, Davis EA (2012) Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes. Diabetes Care 35:1757–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Anand S (1994) Cell death by apoptosis. Indian J Exp Biol 32:843–847

    CAS  PubMed  Google Scholar 

  • Sinha M, Manna P, Sil PC (2007) Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro 21:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Manna P, Sil PC (2008a) Cadmium-induced neurological disorders: prophylactic role of taurine. J Appl Toxicol 28:974–986

    CAS  PubMed  Google Scholar 

  • Sinha M, Manna P, Sil PC (2008b) Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice. BMB Rep 41:657–663

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Manna P, Sil PC (2009) Induction of necrosis in cadmium-induced hepatic oxidative stress and its prevention by the prophylactic properties of taurine. J Trace Elem Med Biol 23:300–313

    Article  CAS  PubMed  Google Scholar 

  • Son M, Ko JI, Kim WB, Kang HK, Kim BK (1997) Taurine can ameliorate inflammatory bowel disease in rats. Adv Exp Med Biol 442:291–298

    Article  Google Scholar 

  • Son H-Y, Kim H, Kwon YH (2007) Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J Nutr Sci Vitaminol 53:324–330

    Article  CAS  PubMed  Google Scholar 

  • Spohr C, Brøns C, Winther K, Dyerberg J, Vaag A (2005) No effect of taurine on platelet aggregation in men with a predisposition to type 2 diabetes mellitus. Platelets 16:301–305

    Article  CAS  PubMed  Google Scholar 

  • Stevens M, Lattimer S, Kamijo M, van Huysen C, Sima A, Greene D (1993) Osmotically-induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy in the rat. Diabetologia 36:608–614

    Article  CAS  PubMed  Google Scholar 

  • Stevens MJ, Hosaka Y, Masterson JA, Jones SM, Thomas TP, Larkin DD (1999) Downregulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells. Am J Physiol Endocrinol Metab 277:E760–E771

    Article  CAS  Google Scholar 

  • Stranahan AM (2015) Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 309:125–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    Article  CAS  PubMed  Google Scholar 

  • Sugden M, Holness M (2002) Gender-specific programming of insulin secretion and action. J Endocrinol 175:757–767

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Han P, Oprescu AI, Lee SC, Gyulkhandanyan AV, Chan GN, Wheeler MB, Giacca A (2007) Evidence for a role of superoxide generation in glucose-induced β-cell dysfunction in vivo. Diabetes 56:2722–2731

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi CM, Ueki K, Kahn CR (2005) Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Investig 115:718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D’Agati VD (2000) Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 11:1656–1666

    CAS  PubMed  Google Scholar 

  • Tas S, Sarandol E, Ayvalik SZ, Serdar Z, Dirican M (2007) Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems. Arch Med Res 38:276–283

    Article  CAS  PubMed  Google Scholar 

  • Tenner Jr TE, Zhang XJ, Lombardini JB (2003) Hypoglycemic effects of taurine in the alloxan-treated rabbit, a model for type 1 diabetes. In: Taurine 5. Springer, Boston, MA, pp 97–104

    Chapter  Google Scholar 

  • Tokunaga H, Yoneda Y, Kuriyama K (1983) Streptozotocin-induced elevation of a pancreatic taurine content and suppressive effect of taurine on insulin secretion. Eur J Pharmacol 87:237–243

    Article  CAS  PubMed  Google Scholar 

  • Toth C, Rong LL, Yang C, Martinez J, Song F, Ramji N, Brussee V, Liu W, Durand J, Nguyen MD (2008) Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 57:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan A, Rao P, Sturman J, Boles T (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Physiol Ren Physiol 269:F429–F438

    Article  CAS  Google Scholar 

  • Ulrich-Merzenich G, Zeitler H, Vetter H, Bhonde RR (2007) Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur J Nutr 46:431

    Article  CAS  PubMed  Google Scholar 

  • Unger RH, Orci L (2010) Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci 107:16009–16012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdile G, Fuller SJ, Martins RN (2015) The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 84:22–38

    Article  CAS  PubMed  Google Scholar 

  • Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento G, Berruti V, Gandolfo MT, Garibotto G, Deferrari G (2002) Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells. J Investig Med 50:443–451

    Article  CAS  PubMed  Google Scholar 

  • Vieira ER, Mendy A, Prado CM, Gasana J, Albatineh AN (2015) Falls, physical limitations, confusion and memory problems in people with type II diabetes, undiagnosed diabetes and prediabetes, and the influence of vitamins A, D and E. J Diabetes Complicat 29:1159–1164

    Article  PubMed  Google Scholar 

  • Vilchis C, Salceda R (1996) Effect of diabetes on levels and uptake of putative amino acid neurotransmitters in rat retina and retinal pigment epithelium. Neurochem Res 21:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, Feldman EL (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148:548–558

    Article  CAS  PubMed  Google Scholar 

  • Vitvitsky V, Garg SK, Banerjee R (2011) Taurine biosynthesis by neurons and astrocytes. J Biol Chem 286:32002–32010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada R, Yagihashi S (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci 1043:598–604

    Article  CAS  PubMed  Google Scholar 

  • Wang L-J, Yu Y-H, Zhang L-G, Wang Y, Niu N, Li Q, Guo L-M (2008) Taurine rescues vascular endothelial dysfunction in streptozocin-induced diabetic rats: correlated with downregulation of LOX-1 and ICAM-1 expression on aortas. Eur J Pharmacol 597:75–80

    Article  CAS  PubMed  Google Scholar 

  • Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91:261–270

    Article  CAS  PubMed  Google Scholar 

  • Wolff SP, Dean R (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Giacca A, Lewis G (2008) Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia 51:139–146

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi YA, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Yamori Y, Liu L, Ikeda K, Miura A, Mizushima S, Miki T, Nara Y (2001) Distribution of 24 h urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC study. Hypertens Res 24:453–457

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Rabbani N, Thornalley PJ, Sarthy VP (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045

    Article  CAS  PubMed  Google Scholar 

  • Yao H-T, Lin P, Chang Y-W, Chen C-T, Chiang M-T, Chang L, Kuo Y-C, Tsai H-T, Yeh T-K (2009) Effect of taurine supplementation on cytochrome P450 2E1 and oxidative stress in the liver and kidneys of rats with streptozotocin-induced diabetes. Food Chem Toxicol 47:1703–1709

    Article  CAS  PubMed  Google Scholar 

  • Yim S, Malhotra A, Veves A (2007) Antioxidants and CVD in diabetes: where do we stand now? Curr Diabetes Rep 7:8–13

    Article  CAS  Google Scholar 

  • Yu X, Xu Z, Mi M, Xu H, Zhu J, Wei N, Chen K, Zhang Q, Zeng K, Wang J (2008) Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats. Neurochem Res 33:500–507

    Article  CAS  PubMed  Google Scholar 

  • Zeng K, Xu H, Mi M, Zhang Q, Zhang Y, Chen K, Chen F, Zhu J, Yu X (2009) Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. Neurochem Res 34:244–254

    Article  CAS  PubMed  Google Scholar 

  • Zeng K, Xu H, Chen K, Zhu J, Zhou Y, Zhang Q, Mantian M (2010a) Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. Mol Cell Neurosci 45:192–199

    Article  CAS  PubMed  Google Scholar 

  • Zeng K, Xu H, Mi M, Chen K, Zhu J, Yi L, Zhang T, Zhang Q, Yu X (2010b) Effects of taurine on glial cells apoptosis and taurine transporter expression in retina under diabetic conditions. Neurochem Res 35:1566–1574

    Article  CAS  PubMed  Google Scholar 

  • Zhang WJ, Tan YF, Yue J, Vranic M, Wojtowicz J (2008) Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurol Scand 117:205–210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyuan Piao.

Ethics declarations

Conflict of interest

The authors hereby declare that there are no conflicts of interest, and all authors agreed to and participated in the work done on this review.

Research subjects

This review is a compilation of previous works performed by different authors. No animal or human was used or harmed in this work.

Informed consent

This manuscript is being submitted after consent was obtained from all authors, and all authors are aware of this manuscript submission.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inam-u-llah, Piao, F., Aadil, R.M. et al. Ameliorative effects of taurine against diabetes: a review. Amino Acids 50, 487–502 (2018). https://doi.org/10.1007/s00726-018-2544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2544-4

Keywords

Navigation