Skip to main content

Advertisement

Log in

Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide–lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M (2011) Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem 18:256–2579

    Article  PubMed  CAS  Google Scholar 

  • Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30:435–446

    Article  PubMed  CAS  Google Scholar 

  • Breukink E, Van Kraaij C, Demel RA, Siezen RJ, Kuipers OP, De Kruijff B (1997) The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36:6968–6976

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC (2010) Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 31:1459–1467

    Article  PubMed  CAS  Google Scholar 

  • Christiaens B, Symoens S, Vanderheyden S, Engelborghs Y, Joliot A, Prochiantz A, Vandekerckhove J, Rosseneu M, Vanloo B (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269:2918–2926

    Article  PubMed  CAS  Google Scholar 

  • Coccia C, Rinaldi AC, Luca V, Barra D, Bozzi A, Di Giulio A, Veerman EC, Mangoni ML (2011) Membrane interaction and antibacterial properties of two mildly cationic peptide diastereomers, bombinins H2 and H4, isolated from Bombina skin. Eur Biophys J 40:577–588

    Article  PubMed  CAS  Google Scholar 

  • Di Luca M, Maccari G, Maisetta G, Batoni G (2015) BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling 31:193–199

    Article  PubMed  CAS  Google Scholar 

  • Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol BioSyst 5:580–587

    Article  PubMed  CAS  Google Scholar 

  • Epand RF, Ramamoorthy A, Epand RM (2006) Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept Lett 13:1–5

    PubMed  CAS  Google Scholar 

  • Falciani C, Brunetti J, Pagliuca C, Menichetti S, Vitellozzi L, Lelli B, Pini A, Bracci L (2010) Design and in vitro evaluation of branched peptide conjugates: turning nonspecific cytotoxic drugs into tumor-selective agents. ChemMedChem 5:567–574

    Article  PubMed  CAS  Google Scholar 

  • Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A (2012) Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS ONE 7:e46259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255–2266

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1892) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098

    Article  PubMed  Google Scholar 

  • Lind TK, Polcyn P, Zielinska P, Cárdenas M, Urbanczyk-Lipkowska Z (2015) On the antimicrobial activity of various peptide-based dendrimers of similar architecture. Molecules 20:738–753

    Article  PubMed  CAS  Google Scholar 

  • Luca V, Stringaro A, Colone M, Pini A, Mangoni ML (2013) Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 70:2773–2786

    Article  PubMed  CAS  Google Scholar 

  • Luganini A, Giuliani A, Pirri G, Pizzuto L, Landolfo S, Gribaudo G (2010) Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparin sulfate. Antiviral Res 85:532–540

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ML, Fiocco D, Mignogna G, Barra D, Simmaco M (2003) Functional characterisation of the 1-18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides 24:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ML, Maisetta G, Di Luca M, Gaddi LM, Esin S, Florio W, Brancatisano FL, Barra D, Campa M, Batoni G (2008) Comparative analysis of the bactericidal activities of amphibian peptide analogues against multidrug-resistant nosocomial bacterial strains. Antimicrob Agents Chemother 52:85–91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Manzo G, Scorciapino MA, Wadhwani P, Bürck J, Montaldo NP, Pintus M, Sanna R, Casu M, Giuliani A, Pirri G, Luca V, Ulrich AS, Rinaldi AC (2015) Enhanced amphiphilic profile of a short β-stranded peptide improves its antimicrobial activity. PLoS ONE 10:e0116379

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcellini L, Borro M, Gentile G, Rinaldi AC, Stella L, Aimola P, Barra D, Mangoni ML (2009) Esculentin-1b(1-18)–a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli. FEBS J 276:5647–5664

    Article  PubMed  CAS  Google Scholar 

  • Opar A (2007) Bad drugs need more drugs. Nature Rev Drug Discov 6:943–944

    Article  CAS  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334

    Article  PubMed  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  PubMed  CAS  Google Scholar 

  • Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 7:2665–2672

    Article  CAS  Google Scholar 

  • Polcyn P, Zielinska P, Zimnicka M, Troć A, Kalicki P, Solecka J, Laskowska A, Urbanczyk-Lipkowska Z (2013) Novel antimicrobial peptide dendrimers with amphiphilic surface and their interactions with phospholipids—insights from mass spectrometry. Molecules 18:7120–7144

    Article  PubMed  CAS  Google Scholar 

  • Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229

    Article  CAS  Google Scholar 

  • Scorciapino MA, Rinaldi AC (2012) Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front Immunol 3:1–4

    Article  Google Scholar 

  • Scorciapino MA, Pirri G, Vargiu AV, Ruggerone P, Giuliani A, Casu M, Bürck J, Wadhwani P, Ulrich AS, Rinaldi AC (2012) A novel dendrimeric peptide with antimicrobial properties: structure-function analysis of SB056. Biophys J 102:1039–1048

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shai Y (2006) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  Google Scholar 

  • Shaw N (1974) Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol 17:63–108

    Article  PubMed  CAS  Google Scholar 

  • Stach M, Siriwardena TN, Köhler T, van Delden C, Darbre T, Reymond JL (2014) Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. Angew Chem Int Ed Engl 53:12827–12831

    Article  PubMed  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL (2002) Antimicrobial dendrimeric peptides. Eur J Biochem 269:923–932

    Article  PubMed  CAS  Google Scholar 

  • Vega NM, Gore J (2014) Collective antibiotic resistance: mechanisms and implications. Curr Opin Microbiol 21:28–34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wilmes M, Sahl HG (2014) Defensin-based anti-infective strategies. Int J Med Microbiol 304:93–99

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2014) Antimicrobial resistance: global report on surveillance. WHO, Geneva. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1. Accessed 16 Aug 2015

  • Yount NY, Yeaman MR (2013) Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 1277:127–138

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Kinnunen PK (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem 277:25170–25177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Rinaldi.

Ethics declarations

Funding

ACR is the recipient of a Grant from the Sardinia Regional Government (http://www.regione.sardegna.it/), L.R. 7/2007, bando 2009, Grant Number: CRP-17385. The Ordine Nazionale dei Biologi is acknowledged for the fellowship provided to VL. Regione Autonoma della Sardegna (P.O.R. FSE 2007–2013) is acknowledged for the fellowships to GM and IS.

Conflict of interest

AG and GP are minor shareholders of Spider Biotech S.r.l.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batoni, G., Casu, M., Giuliani, A. et al. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids 48, 887–900 (2016). https://doi.org/10.1007/s00726-015-2136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2136-5

Keywords

Navigation