Skip to main content
Log in

The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, a designed class of efficient analgesic drugs derived from an endogenous neuropeptide, kyotorphin (KTP, Tyr-Arg) combining C-terminal amidation (KTP-NH2) and N-terminal conjugation to ibuprofen (Ib), IbKTP-NH2, was developed. The Ib moiety is an enhancer of KTP-NH2 analgesic action. In the present study, we have tested the hypothesis that KTP-NH2 is an enhancer of the Ib anti-inflammatory action. Moreover, the impact of the IbKTP-NH2 conjugation on microcirculation was also evaluated by a unified approach based on intravital microscopy in the murine cremasteric muscle. Our data show that KTP-NH2 and conjugates do not cause damage on microcirculatory environment and efficiently decrease the number of leukocyte rolling induced by lipopolysaccharide (LPS). Isothermal titration calorimetry showed that the drugs bind to LPS directly thus contributing to LPS aggregation and subsequent elimination. In a parallel study, molecular dynamics simulations and NMR data showed that the IbKTP-NH2 tandem adopts a preferential “stretched” conformation in lipid bilayers and micelles, with the simulations indicating that the Ib moiety is anchored in the hydrophobic core, which explains the improved partition of IbKTP-NH2 to membranes and the permeability of lipid bilayers to this conjugate relative to KTP-NH2. The ability to bind glycolipids concomitant to the anchoring in the lipid membranes through the Ib residue explains the analgesic potency of IbKTP-NH2 given the enriched glycocalyx of the blood–brain barrier cells. Accumulation of IbKTP-NH2 in the membrane favors both direct permeation and local interaction with putative receptors as the location of the KTP-NH2 residue of IbKTP-NH2 and free KTP-NH2 in lipid membranes is the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amornphimoltham P, Masedunskas A, Weigert R (2011) Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv Drug Deliv Rev 63:119–128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC, McDonald B, Long EM, Robbins SM, Kubes P (2009) Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest 119:1921–1930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arima S, Endo Y, Yaoita H, Omata K, Ogawa S, Tsunoda K, Abe M, Takeuchi K, Abe K, Ito S (1997) Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 100:2816–2823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ayoub M, Scheidegger D (2006) Peptide drugs, overcoming the challenges, a growing business. Chem Today 24:46–48

    CAS  Google Scholar 

  • Baamonde A, Lastra A, Juárez L, García-Suárez O, Meana A, Hidalgo A, Menéndez L (2006) Endogenous beta-endorphin induces thermal analgesia at the initial stages of a murine osteosarcoma. Peptides 27:2778–2785

    Article  PubMed  CAS  Google Scholar 

  • Baez S (1973) An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–396

    Article  PubMed  CAS  Google Scholar 

  • Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, Rovini M, Valenti S, Giorgi G, Calderone V, Martelli A, Testai L, Sautebin L, Rossi A, Papa G, Ghelardini C, Di Cesare Mannelli L, Giordani A, Anzellotti P, Bruno A, Patrignani P, Anzini M (2011) Novel analgesic/anti-inflammatory agents: diarylpyrrole acetic esters endowed with nitric oxide releasing properties. J Med Chem 24:7759–7771

    Article  Google Scholar 

  • Brandenburg K, David A, Howe J, Koch MH, Andrä J, Garidel P (2005) Temperature dependence of the binding of endotoxins to the polycationic peptides polymyxin B and its nonapeptide. Biophys J 88:1845–1858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chiu SW, Clark M, Balaji V, Subramaniam S, Scott HL, Jakobsson E (1995) Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J 69:1230–1245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  PubMed  CAS  Google Scholar 

  • Conceição K, Santos JM, Bruni FM, Klitzke CF, Marques EE, Borges MH, Melo RL, Fernandez JH, Lopes-Ferreira M (2009) Characterization of a new bioactive peptide from Potamotrygon gr. orbignyi freshwater stingray venom. Peptides 3012:2191–2199

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    PubMed  CAS  Google Scholar 

  • Domingues MM, Castanho MA, Santos NC (2009) rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes. PLoS One 22:e8385

    Article  Google Scholar 

  • Domingues MM, Inácio RG, Raimundo JM, Martins M, Castanho MA, Santos NC (2012) Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems. Biopolymers 98:338–344

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Lehrer RI (1998) Antimicrobial peptides of vertebrates. Curr Opin Immunol 11:19

    Google Scholar 

  • Gavins FN, Chatterjee BE (2004) Intravital microscopy for the study of mouse microcirculation in anti-inflammatory drug research: focus on the mesentery and cremaster preparations. J Pharmacol Toxicol Methods 49:1–14

    Article  PubMed  CAS  Google Scholar 

  • Gold R, Buttgereit F, Toyota KV (2001) Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol 117:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hervé F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10:455–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  PubMed  CAS  Google Scholar 

  • Hilburger ME, Adler WM, Truant A, Meissler J, Satishchandran V, Rogers TJ, Eisenstein TK (1997) Morphine induces sepsis in mice. J Infect Dis 176:183–188

    Article  PubMed  CAS  Google Scholar 

  • Hortelano S, López-Fontal R, Través PG, Villa N, Grashoff C, Boscá L, Luque A (2010) ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leukocyte trans-endothelial migration. Cardiovasc Res 86:283–292

    Article  PubMed  CAS  Google Scholar 

  • Hua S, Cabot PJ (2010) Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci 31:427–433

    Article  PubMed  CAS  Google Scholar 

  • Hughes EL, Gavins FN (2010) Troubleshooting methods: using intravital microscopy in drug research. J Pharmacol Toxicol Methods 61:102–112

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hwang TL, Shaka AJ (1998) Multiple-pulse mixing sequences that selectively enhance chemical exchange or cross-relaxation peaks in high-resolution NMR spectra. J Magn Reson 135:280–287

    Article  PubMed  CAS  Google Scholar 

  • Jadert C, Petersson J, Massena S, Ahl D, Grapensparr L, Holm L (2011) Decreased leukocyte recruitment by inorganic nitrate and nitrite in microvascular inflammation and NSAID-induced intestinal injury. Free Radic Biol Med 52:683–692

    Article  PubMed  Google Scholar 

  • Johnson BA, Blevins RA (1994) A computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  PubMed  CAS  Google Scholar 

  • Kolaeva SG, Semenova TP, Santalova IM, Moshkov DA, Anoshkina IA, Golozubova V (2000) Effects of L-thyrosyl–L-arginine (kyotorphin) on the behavior of rats and goldfish. Peptides 21:1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 29:37

    Article  Google Scholar 

  • Lesniak A, Lipkowski AW (2011) Opioid peptides in peripheral pain control. Acta Neurobiol Exp 71:121–138

    Google Scholar 

  • Machelska H, Schopohl JK, Mousa SA, Labuz D, Schäfer M, Stein C (2003) Different mechanisms of intrinsic pain inhibition in early and late inflammation. J Neuroimmunol 141:30–39

    Article  PubMed  CAS  Google Scholar 

  • Machuqueiro M, Campos SRR, Soares CM, Baptista AM (2010) Membrane-induced conformational changes of kyotorphin revealed by molecular dynamics simulations. J Phys Chem B 114:11659–11667

    Article  PubMed  CAS  Google Scholar 

  • Magalhães PR, Machuqueiro M, Baptista AM (2015) Constant-pH molecular dynamics study of kyotorphin in an explicit bilayer. Biophys J 108:2282–2290

    Article  PubMed  Google Scholar 

  • Mangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra D, Epand RM, Shai Y (2008) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283:22907–22917

    Article  PubMed  CAS  Google Scholar 

  • Marx V (2005) Watching peptide drugs grow up. Chem Eng News 83:17

    Google Scholar 

  • Mitchell JA, Warner TD (1999) Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol 128:1121–1132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319:507–514

    Article  PubMed  CAS  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  • Pålsson-McDermott EM, O’Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113:153–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Quyyumi AA (2003) Prognostic value of endothelial function. Am J Cardiol 91:19–24

    Article  Google Scholar 

  • Raman EP, Takeda T, Klimov DK (2009) Molecular dynamics simulations of ibuprofen binding to Aβ peptides. Biophys J 97:2070–2079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramu VG, Bardaji E, Heras M (2014) DEPBT as coupling reagent to avoid racemization in solution phase synthesis of a kyotorphin derivative. Synthesis 46:1481–1486

    Article  Google Scholar 

  • Ribeiro MM, Pinto A, Pinto M, Heras M, Martins I, Correian A, Bardaji E, Tavares I, Castanho M (2011a) Inhibition of nociceptive responses after systemic administration of amidated kyotorphin. Br J Pharm 163:964–973

    Article  CAS  Google Scholar 

  • Ribeiro MM, Pinto AR, Domingues MM, Serrano I, Heras M, Bardaji ER, Tavares I, Castanho MA (2011b) Chemical conjugation of the neuropeptide kyotorphin and ibuprofen enhances brain targeting and analgesia. Mol Pharm 8:1929–1940

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro MM, Franquelim HG, Torcato IM, Ramu VG, Heras M, Bardaji ER, Castanho MA (2012) Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy. Biochem Biophys Res Commun 420:676–679

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro MM, Santos SS, Sousa DS, Oliveira M, Santos SM, Heras M, Bardaji E, Tavares I, Castanho MA (2013) Side-effects of analgesic kyotorphin derivatives: advantages over clinical opioid drugs. Amino Acids 45:171–178

    Article  PubMed  CAS  Google Scholar 

  • Santos NC, Silva AC, Castanho MA, Martins-Silva J, Saldanha C (2003) Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem 3:96–100

    Article  Google Scholar 

  • Seehase S, Lauenstein HD, Schlumbohm C, Switalla S, Neuhaus V, Förster C, Fieguth HG, Pfennig O, Fuchs E, Kaup FJ, Bleyer M, Hohlfeld JM, Braun A, Sewald K, Knauf S (2012) LPS-induced lung inflammation in marmoset monkeys—an acute model for anti-inflammatory drug testing. PLoS One 7:e43709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shiomi H, Ueda H, Takagi H (1981) Isolation and identification of an analgesic opioid dipeptide kyotorphin (Tyr-Arg) from bovine brain. Neuropharmacology 20:633–638

    Article  PubMed  CAS  Google Scholar 

  • Srimal S, Surolia N, Balasubramanian S, Surolia A (1996) Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. Biochem J 315:679–686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takagi H, Shiomi H, Ueda H, Amano H (1979) Morphine-like analgesia by a new dipeptide, l-tyrosyl-l-arginine (Kyotorphin) and its analogue. Eur J Pharmacol 55:109–111

    Article  PubMed  CAS  Google Scholar 

  • Ulevitch RJ, Tobias PS (1999) Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 11:19–22

    Article  PubMed  CAS  Google Scholar 

  • Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Barke RA, Charboneau R, Roy S (2005) Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol 174:426–434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Fundação para a Ciência e Tecnologia (Portugal) is acknowledged for funding (Grant Nos. SFRH/BD/65709/2009, PTDC/BIA-PRO/104378/2008 and PEst-OE/EQB/LA0004/2011). Katia Conceição and Vasanthakumar Ramu were recipients of Marie Curie IAPP fellowships. Marie Curie Industry-Academia Partnerships and Pathways (European Commission) is acknowledged for funding (FP7-PEOPLE-2007-3-1-IAPP. Project 230654). The financial contributions of the Deutsche Forschungsgemeinschaft (to MM), the Agence Nationale de la Recherche (projects TRANSPEP, ProLipIn, membrane DNP and the LabEx Chemistry of Complex Systems), the University of Strasbourg, the CNRS, the Région Alsace and the RTRA International Center of Frontier Research in Chemistry are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katia Conceição or Miguel A. R. B. Castanho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: J. D. Wade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conceição, K., Magalhães, P.R., Campos, S.R.R. et al. The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism. Amino Acids 48, 307–318 (2016). https://doi.org/10.1007/s00726-015-2088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2088-9

Keywords

Navigation