Skip to main content

Advertisement

Log in

Non-enzymatic glycation of α-crystallin as an in vitro model for aging, diabetes and degenerative diseases

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Alpha crystallin, a small heat-shock protein, has been studied extensively for its chaperone function. Alpha crystallin subunits are expressed in stress conditions and have been found to prevent apoptosis by inhibiting the activation of caspase pathway. Non-enzymatic glycation of protein leads to the formation of advanced glycation end-products (AGEs). These AGEs bind to receptors and lead to blocking the signaling pathways or cause protein precipitation as observed in aggregation-related diseases. Methylglyoxal (MGO) is one of the major glycating agents expressed in pathological conditions due to defective glycolysis pathway. MGO reacts rapidly with proteins, forms AGEs and finally leads to aggregation. The goal of this study was to understand the non-enzymatic glycation-induced structural damage in alpha crystallin using biophysical and spectroscopic characterization. This will help to develop better disease models for understanding the biochemical pathways and also in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Augusteyn RC, Koretz JF (1987) A possible structure for α-crystallin. FEBS Lett 222:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bartling B, Hofmann H-S, Sohst A, Hatzky Y, Somoza V, Silber R-E, Simm A (2011) Prognostic potential and tumor growth-inhibiting effect of plasma advanced glycation end products in non-small cell lung carcinoma. Mol Med 17:980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bento CF, Marques F, Fernandes R, Pereira P (2010) Methylglyoxal alters the function and stability of critical components of the protein quality control. PloS One 5:e13007

    Article  PubMed Central  PubMed  Google Scholar 

  • Borkman RF (1984) Cataracts and photochemical damage in the lens. In: Ciba foundation symposium 106-human cataract formation. Wiley Online Library, pp 88–109

  • Borkman RF, Lerman S (1978) Fluorescence spectra of tryptophan residues in human and bovine lens proteins. Exp Eye Res 26:705–713

    Article  CAS  PubMed  Google Scholar 

  • Borkman RF, Dalrymple A, Lerman S (1977) Ultraviolet action spectrum for fluorogen production in the ocular lens. Photochem Photobiol 26:129–132

    Article  CAS  PubMed  Google Scholar 

  • Borkman R, Tassin J, Lerman S (1980) Fluorescence lifetimes of ocular lens chromophores. Photochem Photobiol 31:519–521

    Article  CAS  Google Scholar 

  • Borkman RF, Tassin JD, Lerman S (1981) Fluorescence lifetimes of chromophores in intact human lenses and lens protection. Exp Eye Res 32:313–322

    Article  CAS  PubMed  Google Scholar 

  • Borkman RF, Knight G, Obi B (1996) The molecular chaperone α-crystallin inhibits UV-induced protein aggregation. Exp Eye Res 62:141–148

    Article  CAS  PubMed  Google Scholar 

  • Boyle D, Takemoto L (1994) Characterization of the α–γ and α–β complex: evidence for an in vivo functional role of α-crystallin as a molecular chaperone. Exp Eye Res 58:9–16

    Article  CAS  PubMed  Google Scholar 

  • Cherian M, Abraham E (1995a) Decreased molecular chaperone property of α-crystallins due to posttranslational modifications. Biochem Biophys Res Commun 208:675–679

    Article  CAS  PubMed  Google Scholar 

  • Cherian M, Abraham EC (1995b) Diabetes affects alpha-crystallin chaperone function. Biochem Biophys Res Commun 212:184–189. doi:10.1006/bbrc.1995.1954

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Weissman JS, Horwich AL (1994) Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78:365–372

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Surewicz WK (1995) On the substrate specificity of alpha-crystallin as a molecular chaperone. Biochem J 311:367–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    Article  CAS  PubMed  Google Scholar 

  • Dillon J (1991) New trends in photobiology: the photophysics and photobiology of the eye. J Photochem Photobiol B Biol 10:23–40

    Article  CAS  Google Scholar 

  • Dillon J, Atherton SJ (1990) Time resolved spectroscopic studies on the intact human lens. Photochem Photobiol 51:465–468

    Article  CAS  PubMed  Google Scholar 

  • Dillon J, Wang RH, Atherton SJ (1990) Photochemical and photophysical studies on human lens constituents. Photochem Photobiol 52:849–854

    Article  CAS  PubMed  Google Scholar 

  • Ervin LA, Dillon J, Gaillard ER (2001) Photochemically modified α-crystallin: a model system for aging in the primate lens. Photochem Photobiol 73:685–691

    Article  CAS  PubMed  Google Scholar 

  • Finley EL, Busman M, Dillon J, Crouch RK, Schey KL (1997) Identification of photooxidation sites in bovine α-crystallin. Photochem Photobiol 66:635–641

    Article  CAS  PubMed  Google Scholar 

  • Finley EL, Dillon J, Crouch RK, Schey KL (1998) Identification of tryptophan oxidation products in bovine α-crystallin. Protein Sci 7:2391–2397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foffi G, Savin G, Bucciarelli S, Dorsaz N, Thurston GM, Stradner A, Schurtenberger P (2014) Hard sphere-like glass transition in eye lens α-crystallin solutions. Proc Natl Acad Sci 111:16748–16753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fort PE, Lampi KJ (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 92:98–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaillard ER, Zheng L, Merriam JC, Dillon J (2000) Age-related changes in the absorption characteristics of the primate lens. Invest Ophthalmol Vis Sci 41:1454–1459

    CAS  PubMed  Google Scholar 

  • Ganea E (2001) Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci 2:205–225

    Article  CAS  PubMed  Google Scholar 

  • Gangadhariah MH, Wang B, Linetsky M, Henning C, Spanneberg R, Glomb MA, Nagaraj RH (2010) Hydroimidazolone modification of human αA-crystallin: effect on the chaperone function and protein refolding ability. Biochim Biophys Acta Mol Basis Dis 1802:432–441

    Article  CAS  Google Scholar 

  • Garland D, Russell P, Zigler JS Jr (1988) The oxidative modification of lens proteins. Oxygen radicals in biology and medicine. Springer, Berlin, pp 347–352

    Chapter  Google Scholar 

  • Groenen PJ, Merck KB, de Jong WW, Bloemendal H (1994) Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem FEBS 225:1–19

    Article  CAS  Google Scholar 

  • Guo H (2008) Computational simulation studies of RPE65, alpha crystallin, and ABCR. Ph.D., Northern Illinois University

  • Hamann S, Métrailler S, Schorderet DF, Cottet S (2013) Analysis of the cytoprotective role of α-crystallins in cell survival and implication of the αA-crystallin C-terminal extension domain in preventing bax-induced apoptosis. PLoS One 8:e55372. doi:10.1371/journal.pone.0055372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heys KR, Friedrich MG, Truscott RJ (2007) Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Aging Cell 6:807–815. doi:10.1111/j.1474-9726.2007.00342.x

    Article  CAS  PubMed  Google Scholar 

  • Hoehenwarter W, Klose J, Jungblut PR (2006) Eye lens proteomics. Amino Acids 30:369–389

    Article  CAS  PubMed  Google Scholar 

  • Hollar C, Parris N, Hsieh A, Cockley K (1995) Factors affecting the denaturation and aggregation of whey proteins in heated whey protein concentrate mixtures. J Dairy Sci 78:260–267

    Article  CAS  Google Scholar 

  • Hook DW, Harding JJ (1996) Alpha-crystallin acting as a molecular chaperone protects catalase against steroid-induced inactivation. FEBS Lett 382:281–284

    Article  CAS  PubMed  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Kannan R, Sreekumar PG, Hinton DR (2012) Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 31:576–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanova HA et al (2005) Mechanism of chaperone-like activity. Suppression of thermal aggregation of βL-crystallin by α-crystallin. Biochemistry 44:15480–15487

    Article  CAS  PubMed  Google Scholar 

  • Kielmas M, Kijewska M, Kluczyk A, Oficjalska J, Golebiewska B, Stefanowicz P, Szewczuk Z (2015) Comparison of modification sites in glycated crystallin in vitro and in vivo. Anal Bioanal Chem. doi:10.1007/s00216-015-8487-7

    PubMed Central  PubMed  Google Scholar 

  • Krishna Sharma K, Ortwerth B (1995) Effect of cross-linking on the chaperone-like function of alpha crystallin. Exp Eye Res 61:413–421

    Article  Google Scholar 

  • Kumar MS, Reddy PY, Kumar PA, Surolia I, Reddy GB (2004) Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J 379:273–282. doi:10.1042/bj20031633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar PA, Kumar MS, Reddy GB (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J 408:251–258. doi:10.1042/bj20070989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurzel RB, Wolbarsht M, Yamanashi BS, Staton GW, Borkman RF (1973) Tryptophan excited states and cataracts in the human lens. Nature 241:132–133

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz J, Geddes C (1991) Topics in fluorescence spectrscopy. Plenum Press, New York

    Google Scholar 

  • Lee J, Robinson GW (1985) Electron hydration dynamics using the 2-anilinonaphthalene precursor. J Am Chem Soc 107:6153–6156. doi:10.1021/ja00308a001

    Article  CAS  Google Scholar 

  • Lee JS et al (2012) Expression of alpha B-crystallin overrides the anti-apoptotic activity of XIAP. Neurooncology 14:1332–1345. doi:10.1093/neuonc/nos247

    CAS  Google Scholar 

  • Lerman S, Borkman R (1978) Photochemistry and lens aging. Interdiscip Top Gerontol 13:154

    CAS  Google Scholar 

  • Liang JJ, Liu BF (2006) Fluorescence resonance energy transfer study of subunit exchange in human lens crystallins and congenital cataract crystallin mutants. Protein Sci 15:1619–1627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindner AB, Demarez A (2009) Protein aggregation as a paradigm of aging. Biochi Biophys Acta 1790:980–996

    Article  CAS  Google Scholar 

  • Mandal K, Dillon J, Gaillard ER (2000) Heat and concentration effects on the small heat shock protein, alpha-crystallin. Photochem Photobiol 71:470–475

    Article  CAS  PubMed  Google Scholar 

  • McDermott M, Chiesa R, Roberts JE, Dillon J (1991) Photooxidation of specific residues in alpha-crystallin polypeptides. Biochemistry 30:8653–8660

    Article  CAS  PubMed  Google Scholar 

  • Meredith SC (2006) Protein denaturation and aggregation. Ann N Y Acad Sci 1066:181–221

    Article  Google Scholar 

  • Monnier VM (1989) Toward a Maillard reaction theory of aging. Prog Clin Biol Res 304:1–22

    CAS  PubMed  Google Scholar 

  • Monnier VM (1990) Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 45:B105–B111

    Article  CAS  PubMed  Google Scholar 

  • Monnier VM, Cerami A (1982) Non-enzymatic glycosylation and browning of proteins in diabetes. Clin Endocrinol Metab 11:431–452

    Article  CAS  PubMed  Google Scholar 

  • Monnier VM, Miyata S, Nagaraj RH, Sell DR (1993) Relevance of the early and advanced Maillard reaction in diabetic neuropathy. Diabet Med 10(Suppl 2):103s–106s

    Article  PubMed  Google Scholar 

  • Monnier VM, Sell DR, Dai Z, Nemet I, Collard F, Zhang J (2008) The role of the amadori product in the complications of diabetes. Ann N Y Acad Sci 1126:81–88. doi:10.1196/annals.1433.052

    Article  CAS  PubMed  Google Scholar 

  • Moore JW (1961) Kinetics and mechanism. Wiley, New York

    Google Scholar 

  • Mukhopadhyay S, Kar M, Das KP (2010) Effect of methylglyoxal modification of human alpha-crystallin on the structure, stability and chaperone function. Protein J 29:551–556. doi:10.1007/s10930-010-9289-6

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj RH, Linetsky M, Stitt AW (2012) The pathogenic role of Maillard reaction in the aging eye. Amino Acids 42:1205–1220. doi:10.1007/s00726-010-0778-x

    Article  CAS  PubMed  Google Scholar 

  • Nahomi RB, Oya-Ito T, Nagaraj RH (2013) The combined effect of acetylation and glycation on the chaperone and anti-apoptotic functions of human alpha-crystallin. Biochim Biophys Acta 1832:195–203. doi:10.1016/j.bbadis.2012.08.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishio I, Weiss JN, Tanaka T, Clark JI, Giblin FJ, Reddy VN, Benedek GB (1984) In vivo observation of lens protein diffusivity in normal and X-irradiated rabbit lenses. Exp Eye Res 39:61–68

    Article  CAS  PubMed  Google Scholar 

  • Njoroge FG, Monnier VM (1989) The chemistry of the Maillard reaction under physiological conditions: a review. Prog Clin Biol Res 304:85–107

    CAS  PubMed  Google Scholar 

  • Pasupuleti N, Matsuyama S, Voss O, Doseff AI, Song K, Danielpour D, Nagaraj RH (2010) The anti-apoptotic function of human [alpha]A-crystallin is directly related to its chaperone activity. Cell Death Dis 1:e31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petta V, Pharmakakis N, Papatheodorou GN, Yannopoulos SN (2008) Dynamic light scattering study on phase separation of a protein-water mixture: application on cold cataract development in the ocular lens. Phys Rev E Stati Nonlin Soft Matter Phys 77:061904

    Article  CAS  Google Scholar 

  • Raman B, Rao CM (1994) Chaperone-like activity and quaternary structure of alpha-crystallin. J Biol Chem 269:27264–27268

    CAS  PubMed  Google Scholar 

  • Raman B, Ramakrishna T, Mohan Rao C (1995) Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett 365:133–136

    Article  CAS  PubMed  Google Scholar 

  • Rao PV, Horwitz J, Zigler J (1993) α-Crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun 190:786–793

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Dutta S, Halder J, Ray M (1994) Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 303:69–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy VS, Reddy GB (2015) Emerging role for alphaB-crystallin as a therapeutic agent: pros and cons. Curr Mol Med 15:47–61

    Article  CAS  PubMed  Google Scholar 

  • Regini J, Grossmann J, Burgio M, Malik N, Koretz J, Hodson S, Elliott G (2004) Structural changes in α-crystallin and whole eye lens during heating, observed by low-angle X-ray diffraction. J Mol Biol 336:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Rekas A et al (2004) Interaction of the molecular chaperone αB-crystallin with α-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340:1167–1183

    Article  CAS  PubMed  Google Scholar 

  • Roberts JE, Kinley JS, Young AR, Jenkins G, Atherton SJ, Dillon J (1991) In vivo and photophysical studies on photooxidative damage to lens proteins and their protection by radioprotectors. Photochem Photobiol 53:33–38

    Article  CAS  PubMed  Google Scholar 

  • Rosca MG et al (2005) Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol 289:F420–F430

    Article  CAS  PubMed  Google Scholar 

  • Simm A, Muller B, Nass N, Hofmann B, Bushnaq H, Silber RE, Bartling B (2015) Protein glycation—between tissue aging and protection. Exp Gerontol 68:71–75. doi:10.1016/j.exger.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  • Sreelakshmi Y, Santhoshkumar P, Bhattacharyya J, Sharma KK (2004) αA-Crystallin interacting regions in the small heat shock protein, αB-crystallin. Biochemistry 43:15785–15795

    Article  CAS  PubMed  Google Scholar 

  • Srinivas V, Raman B, Rao KS, Ramakrishna T, Rao CM (2003) Structural perturbation and enhancement of the chaperone-like activity of α-crystallin by arginine hydrochloride. Protein Sci 12:1262–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivasan AN, Nagineni CN, Bhat SP (1992) Alpha A-crystallin is expressed in non-ocular tissues. J Biol Chem 267:23337–23341

    CAS  PubMed  Google Scholar 

  • Stevens VJ, Rouzer CA, Monnier VM, Cerami A (1978) Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci USA 75:2918–2922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strenk SA, Strenk LM, Koretz JF (2005) The mechanism of presbyopia. Progr Retin Eye Res 24:379–393. doi:10.1016/j.preteyeres.2004.11.001

    Article  Google Scholar 

  • Takemoto L, Boyle D (1994) Molecular chaperone properties of the high molecular weight aggregate from aged lens. Curr Eye Res 13:35–44

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Ishimoto C (1977) In vivo observation of protein diffusivity in rabbit lenses. Invest Ophthalmol Vis Sci 16:135–140

    CAS  PubMed  Google Scholar 

  • Tardieu A (1998) Alpha-crystallin quaternary structure and interactive properties control eye lens transparency. Int J Biol Macromol 22:211–217

    Article  CAS  PubMed  Google Scholar 

  • Turk Z, Nemet I, Varga-Defteardarovic L, Car N (2006) Elevated level of methylglyoxal during diabetic ketoacidosis and its recovery phase. Diabetes Metab 32:176–180

    Article  CAS  PubMed  Google Scholar 

  • Van Kleef FS, De Jong WW, Hoenders HJ (1975) Stepwise degradations and deamidation of the eye lens protein alpha-crystallin in ageing. Nature 258:264–266

    Article  CAS  PubMed  Google Scholar 

  • Van Montfort R, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  Google Scholar 

  • Vanhoudt J, Abgar S, Aerts T, Clauwaert J (2000) Native quaternary structure of bovine alpha-crystallin. Biochemistry 39:4483–4492

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Spector A (1995) Alpha-crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci 36:311–321

    CAS  PubMed  Google Scholar 

  • Wilker SC, Chellan P, Arnold BM, Nagaraj RH (2001) Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine. Anal Biochem 290:353–358. doi:10.1006/abio.2001.4992

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from The Advanced Photon Source at Argonne supported by the US Department of Energy Office of Science under contract DE-AC02-06CH11357. We also thank Alec Sandy and Suresh Narayanan for assistance with the synchrotron X-ray data. The authors thank Hao Guo for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth R. Gaillard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

J. P. Dillon: In memoriam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karumanchi, D.K., Karunaratne, N., Lurio, L. et al. Non-enzymatic glycation of α-crystallin as an in vitro model for aging, diabetes and degenerative diseases. Amino Acids 47, 2601–2608 (2015). https://doi.org/10.1007/s00726-015-2052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2052-8

Keywords

Navigation