Skip to main content
Log in

13C MAS NMR Mechanistic Study of Propene Transformation on Silver-Modified ZSM-5 Zeolite in the Presence of Molecular Oxygen

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Silver-modified zeolites have demonstrated promising properties for hydrocarbon feedstock valorization and the oxidation of organic compounds. Within the frame of the scientific interest for selective oxidation of light alkenes on metal-modified zeolites, the transformation of propene on Ag/H-ZSM-5 zeolite in the presence of molecular oxygen has been monitored by 13C (CP) MAS NMR spectroscopy at 296–773 K. Silver-allyl intermediate species have been detected by 13C CP/MAS NMR, indicating that Ag+ sites are involved in propene transformation. It is assumed that oxygen and propene compete for the Ag+ adsorption sites, thus prompting propene adsorption on zeolite Brønsted acid sites (BAS) and its further transformation by oligomerization and conjunct polymerization. Among the products of propene oxidation by molecular oxygen, only carbon dioxide has been detected by 13C MAS NMR, implying high activity of Ag/H-ZSM-5 in alkene total oxidation. It is thus inferred that silver-modified zeolite is not a promising catalyst for propene selective oxidation to propene oxide and carbonyl group containing organics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. X.E. Verykios, F.P. Stein, R.W. Coughlin, R.W. Coughlin, J. Catal. 66, 368–382 (1980)

    Article  Google Scholar 

  2. J. Martinez-Ortigosa, C.W. Lopes, G. Agostini, A.E. Palomares, T. Blasco, F. Rey, Microporous Mesoporous Mater. 323, 111230 (2021)

    Article  Google Scholar 

  3. I. López-Hernández, C. García, V. Truttmann, S. Pollitt, N. Barrabés, G. Rupprechter, F. Rey, A.E. Palomares, Catal. Today 345, 22–26 (2020)

    Article  Google Scholar 

  4. C.T. Wong, A.Z. Abdullah, S. Bhatia, J. Hazard. Mater. 157, 480–489 (2008)

    Article  Google Scholar 

  5. N. Li, B. Huang, X. Dong, J. Luo, Y. Wang, H. Wang, D. Miao, Y. Pan, F. Jiao, J. Xiao, Z. Qu, Nat. Commun. 13, 2209 (2022)

    Article  ADS  Google Scholar 

  6. H. Leibovich, C. Aharoni, N. Lotan, J. Catal. 87, 319–324 (1984)

    Article  Google Scholar 

  7. S.J. Khatib, S.T. Oyama, Catal. Rev. -Sci. Eng. 57, 306–344 (2015)

    Article  Google Scholar 

  8. L. Liu, X.P. Ye, J.J. Bozell, Chemsuschem 5, 1162–1180 (2012)

    Article  Google Scholar 

  9. D.E. Van Sickle, M.L. Prest, J. Catal. 19, 209–215 (1970)

    Article  Google Scholar 

  10. J. Teržan, M. Huš, B. Likozar, P. Djinović, ACS Catal. 10, 13415–13436 (2020)

    Article  Google Scholar 

  11. Y. Ono, T. Baba, Phys. Chem. Chem. Phys. 17, 15637–15654 (2015)

    Article  Google Scholar 

  12. J.F. Haw, B.R. Richardson, I.S. Oshiro, N.D. Lazo, J.A. Speed, J. Am. Chem. Soc. 111, 2052–2058 (1989)

    Article  Google Scholar 

  13. A.G. Stepanov, V.N. Romannikov, K.I. Zamaraev, Catal. Lett. 13, 395–405 (1992)

    Article  Google Scholar 

  14. A.G. Stepanov, V.N. Sidelnikov, K.I. Zamaraev, Chem. Eur. J. 2, 157–167 (1996)

    Article  Google Scholar 

  15. J.F. Haw, J.B. Nicholas, W. Song, F. Deng, Z. Wang, T. Xu, C.S. Heneghan, J. Am. Chem. Soc. 122, 4763–4775 (2000)

    Article  Google Scholar 

  16. A.G. Stepanov, M.V. Luzgin, S.S. Arzumanov, H. Ernst, D. Freude, J. Catal. 211, 165–172 (2002)

    Google Scholar 

  17. A.G. Stepanov, S.S. Arzumanov, M.V. Luzgin, H. Ernst, D. Freude, V.N. Parmon, J. Catal. 235, 221–228 (2005)

    Article  Google Scholar 

  18. I.I. Ivanova, Y.G. Kolyagin, V.V. Ordomsky, E.V. Asachenko, E.M. Pasynkova, Y.A. Pirogov, J. Mol. Catal. A Chem. 305, 47–53 (2009)

    Article  Google Scholar 

  19. J.F. Wu, W.D. Wang, J. Xu, F. Deng, W. Wang, Chem. Eur. J. 16, 14016–14025 (2010)

    Article  Google Scholar 

  20. A.G. Stepanov, Basics of solid-state NMR for application in zeolite science: material and reaction characterization, in Zeolites and Zeolite-like Materials. ed. by B.F. Sels, L.M. Kustov (Elsevier Inc., 2016), pp.137–188

    Chapter  Google Scholar 

  21. C. Wang, X. Zhao, M. Hu, G. Qi, Q. Wang, S. Li, J. Xu, F. Deng, Angew. Chem. Int. Ed. 60, 23630–23634 (2021)

    Article  Google Scholar 

  22. A.G. Stepanov, S.S. Arzumanov, A.A. Gabrienko, Chem. Methods 1, 224–230 (2021)

    Article  Google Scholar 

  23. Z.N. Lashchinskaya, A.A. Gabrienko, A.G. Stepanov, Microporous Mesoporous Mater. 350, 112448 (2023)

    Article  Google Scholar 

  24. Z.N. Lashchinskaya, A.A. Gabrienko, I.P. Prosvirin, A.V. Toktarev, A.G. Stepanov, ACS Catal. 13, 10248–10260 (2023)

    Article  Google Scholar 

  25. M.A. Artsiusheuski, R. Verel, J.A. van Bokhoven, V.L. Sushkevich, Angew. Chem. Int. Ed. 62, e202309180 (2023)

    Article  Google Scholar 

  26. A.G. Stepanov, K.I. Zamaraev, Catal. Lett. 19, 153–158 (1993)

    Article  Google Scholar 

  27. A.G. Stepanov, S.S. Arzumanov, M.V. Luzgin, H. Ernst, D. Freude, J. Catal. 229, 243–251 (2005)

    Article  Google Scholar 

  28. M.V. Luzgin, A.G. Stepanov, S.S. Arzumanov, V.A. Rogov, V.N. Parmon, W. Wang, M. Hunger, D. Freude, Chem. Eur. J. 12, 457–465 (2006)

    Article  Google Scholar 

  29. Z.N. Lashchinskaya, A.A. Gabrienko, S.S. Arzumanov, A.A. Kolganov, A.V. Toktarev, D. Freude, J. Haase, A.G. Stepanov, ACS Catal. 10, 14224–14233 (2020)

    Article  Google Scholar 

  30. A.A. Gabrienko, Z.N. Lashchinskaya, S.S. Arzumanov, A.V. Toktarev, D. Freude, J. Haase, A.G. Stepanov, J. Phys. Chem. C 125, 15343–15353 (2021)

    Article  Google Scholar 

  31. A.A. Gabrienko, I.G. Danilova, S.S. Arzumanov, L.V. Pirutko, D. Freude, A.G. Stepanov, J. Phys. Chem. C 122, 25386–25395 (2018)

    Article  Google Scholar 

  32. A.A. Gabrienko, S.S. Arzumanov, A.V. Toktarev, D. Freude, J. Haase, A.G. Stepanov, J. Phys. Chem. C 123, 27573–27583 (2019)

    Article  Google Scholar 

  33. S.S. Arzumanov, A.G. Stepanov, J. Phys. Chem. C 122, 23432–23440 (2018)

    Article  Google Scholar 

  34. E. Breitmaier, W. Voelter, Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic and Biochemistry (VCH, New York, 1990)

    Google Scholar 

  35. E. Kukulska-Zając, J. Datka, Microporous Mesoporous Mater. 109, 49–57 (2008)

    Article  Google Scholar 

  36. A.A. Gabrienko, S.S. Arzumanov, I.B. Moroz, A.V. Toktarev, W. Wang, A.G. Stepanov, J. Phys. Chem. C 117, 7690–7702 (2013)

    Article  Google Scholar 

  37. G. Almeida, A. de Marcos-Galán, J. Martínez-Ortigosa, G. Sastre, M. Jiménez-Ruiz, F. Rey, T. Blasco, Microporous Mesoporous Mater. 367, 112982 (2024)

    Article  Google Scholar 

  38. J.P. van den Berg, J.P. Wolthuizen, A.D.H. Clague, G.R. Hays, R. Huis, J.H.C. van Hooff, J. Catal. 80, 130–138 (1983)

    Article  Google Scholar 

  39. M. Saunders, P. Vogel, E.L. Hagen, J. Rosenfeld, Acc. Chem. Res. 6, 53 (1973)

    Article  Google Scholar 

  40. A.G. Stepanov, M.V. Luzgin, V.N. Romannikov, V.N. Sidelnikov, E.A. Paukshtis, J. Catal. 178, 466–477 (1998)

    Article  Google Scholar 

  41. M.V. Luzgin, A.G. Stepanov, A. Sassi, J. Sommer, Chem. Eur. J. 6, 2368–2376 (2000)

    Article  Google Scholar 

  42. A.A. Gabrienko, S.S. Arzumanov, A.V. Toktarev, I.G. Danilova, D. Freude, A.G. Stepanov, Phys. Chem. Chem. Phys. 12, 5149–5155 (2010)

    Article  Google Scholar 

  43. V.M. Gun’ko, V.V. Turov, Langmuir 15, 6405–6415 (1999)

    Article  Google Scholar 

  44. P.A. Couperus, A.D.H. Clague, J.P.C.M. van Dongen, Omr Organ. Magnet. Res. 8, 426–431 (1976)

    Article  Google Scholar 

  45. B.E. Mann, Adv. Organomet. Chem. 12, 135–213 (1974)

    Article  Google Scholar 

  46. R. Benn, H. Grondey, H. Lehmkuhl, H. Nehl, K. Angermund, C. Kruger, Angew. Chem. Int. Ed. 26, 1279–1280 (1987)

    Article  Google Scholar 

  47. R.B. Bates, S. Brenner, C.M. Cole, E.W. Davidson, G.D. Forsythe, D.A. McCombs, A.S. Roth, J. Am. Chem. Soc. 95, 926–927 (1973)

    Article  Google Scholar 

  48. G. Spoto, S. Bordiga, G. Ricchiardi, D. Scarano, A. Zecchina, E. Borello, J. Chem. Soc. Faraday T. 90, 2827–2835 (1994)

    Article  Google Scholar 

  49. S. Bordiga, G. Turnes Palomino, D. Arduino, C. Lamberti, A. Zecchina, C. Otero Area, J. Mol. Catal. A Chem. 146, 97–106 (1999)

    Article  Google Scholar 

  50. Y. Kuroda, H. Onishi, T. Mori, Y. Yoshikawa, R. Kumashiro, M. Nagao, H. Kobayashi, J. Phys. Chem. B 106, 8976–8987 (2002)

    Article  Google Scholar 

  51. V.N. Ipatieff, H. Pines, J. Org. Chem. 01, 464–489 (1936)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (grant no. 21-73-10013). The maintenance of solid-state NMR and FTIR facilities was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental assignment for Boreskov Institute of Catalysis (project FWUR-2024-0032).

Funding

Russian Science Foundation (grant no. 21-73-10013). Ministry of Science and Higher Education of the Russian Federation within the governmental assignment for Boreskov Institute of Catalysis (project FWUR-2024-0032).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by Alexander V. Toktarev. Sample preparation and MAS NMR and FTIR measurements were performed by Zoya N. Lashchinskaya and Anton A. Gabrienko. Data analysis and writing of the manuscript were performed by Zoya N. Lashchinskaya, Anton A. Gabrienko, and Alexander G. Stepanov. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anton A. Gabrienko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing financial interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 398 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashchinskaya, Z.N., Gabrienko, A.A., Toktarev, A.V. et al. 13C MAS NMR Mechanistic Study of Propene Transformation on Silver-Modified ZSM-5 Zeolite in the Presence of Molecular Oxygen. Appl Magn Reson (2024). https://doi.org/10.1007/s00723-024-01652-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-024-01652-0

Navigation