Skip to main content
Log in

The Propylene Oxide Rearrangement Catalyzed by the Lewis Acid Sites of ZSM-5 Catalyst with Controllable Surface Acidity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The rearrangement of propylene oxide is greatly affected by the acidity of the catalyst. ZSM-5 zeolite with easily regulated surface acidity was used to catalyze the reaction with propionaldehyde as main product. The difference in the ratio of silica to alumina resulted in significant changes in the acidity. The results show that the ratio of the amount of Lewis acid sites (LAS) to the amount of Brønsted acid sites (BAS) has a great positive influence on the catalytic performance. When the ratio of silica to alumina reaches 50, the ratio of the LAS to BAS reaches the maximum value of 18.6, the catalytic performance is excellent. The in-situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was employed to study the adsorption and reaction behavior of propylene oxide on the ZSM-5 catalyst. Results showed that the epoxy ring of propylene oxide first adsorbs on the Lewis acid site (Al atom with empty electron orbital) of ZSM-5 catalyst to form an intermediate with the bond between C=O and C–O which then converts to the propionaldehyde. The Lewis acid sites is of great importance for the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barreca D, Copley MP, Graham AE, Holmes JD, Morris MA, Seraglia R, Spalding TR, Tondello E (2006) Appl Catal A 304:14–20

    Article  CAS  Google Scholar 

  2. Smith BM, Skellam EJ, Oxley SJ, Graham AE (2007) Org Biomol Chem 5:1979–1982

    Article  CAS  Google Scholar 

  3. Smith K, El-Hiti GA, Al-Shamali M (2006) Catal Lett 109:77–82

    Article  CAS  Google Scholar 

  4. Wang Y, Li Z, Ma W, Kinnuda G, Qu H, Zhong Q (2016) Rsc Adv 6:57000–57008

    Article  CAS  Google Scholar 

  5. Serrano DP, Grieken RV, Melero JA, García A, Vargas C (2010) J Mol Catal A 318:68–74

    Article  CAS  Google Scholar 

  6. Wang Y, Ma W, Wang D, Zhong Q (2017) Chem Eng J 307:1047–1054

    Article  CAS  Google Scholar 

  7. Zhang J, Wang D, Ma W (2017) Nano Brief Rep Rev 13:1

    Google Scholar 

  8. Ma W, Si W, Wu W, Zhong Q (2011) Catal Lett 141:1032–1036

    Article  CAS  Google Scholar 

  9. Smith K, El-Hiti GA, Matthews I, Al-Shamali M, Watson T (2009) Catal Lett 128:101–105

    Article  CAS  Google Scholar 

  10. Lan DH, Wang HT, Chen L, Au CT, Yin SF (2016) Carbon 100:81–89

    Article  CAS  Google Scholar 

  11. Mao J, Wang Y, Zhu J, Yu J, Hu Z (2018) Appl Surf Sci 447:235–243

    Article  CAS  Google Scholar 

  12. Zhang Z, Sun X, Zhang X, Fang X (2016) Catal Lett 146:1–7

    Article  CAS  Google Scholar 

  13. Ishihara K, Hanaki N, Yamamoto H (2010) Cheminform 26:225–230

    Google Scholar 

  14. Suda K, Nakajima SI, Satoh Y, Takanami T (2009) Chem Commun 40:1255–1257

    Article  Google Scholar 

  15. Raptis C, Garcia H, Stratakis M (2010) Angew Chem Int Ed 48:3133–3136

    Article  Google Scholar 

  16. Serrano DP, Uguina MA, Ovejero G, Grieken RV, Camacho M (1995) Microporous Mater 4:273–282

    Article  CAS  Google Scholar 

  17. Zhang XF, Yao J, Yang X (2017) Catal Lett 147:1–10

    Article  Google Scholar 

  18. Virnig MJ (1991) Process for isomerizing epoxides to ketones US 5032323

  19. Hoelderich W, Goetz N, Hupfer L, Lermer H (1990) Preparation of aldehydes and/or ketones BU conversion of epoxides US 4980511

  20. Wu Z, Liu S, Xie S, Wang Q, Qian X, Xu L (2005) React Kinet Catal Lett 84:45–51

    Article  CAS  Google Scholar 

  21. Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) J Catal 258:243–249

    Article  CAS  Google Scholar 

  22. Serrano DP, Sanz R, Pizarro P, Moreno I, Medina S (2014) Appl Catal B 146:35–42

    Article  CAS  Google Scholar 

  23. Feng X, Sheng N, Liu Y, Chen X, Chen D, Yang C, Zhou X (2017) Acs Catal 7:2668–2675

    Article  CAS  Google Scholar 

  24. Jiang X, Su X, Bai X, Li Y, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2017) Microporous Mesoporous Mater 263:243–250

    Article  Google Scholar 

  25. Kolobova E, Pestryakov A, Mamontov G, Kotolevich Y, Bogdanchikova N, Farias M, Vosmerikov A, Vosmerikova L, Corberan VC (2017) Fuel 188:121–131

    Article  CAS  Google Scholar 

  26. Gao Y, Wu G, Ma F, Liu C, Jiang F, Wang Y, Wang A (2016) Microporous Mesoporous Mater 226:251–259

    Article  CAS  Google Scholar 

  27. Shirazi L, Jamshidi E, Ghasemi MR (2010) Cryst Res Technol 43:1300–1306

    Article  Google Scholar 

  28. Yue Y, Gu L, Zhou Y, Liu H, Yuan P, Zhu H, Bai Z, Bao X (2017) Ind Eng Chem Res 56:10069–10077

    Article  CAS  Google Scholar 

  29. Farneth WE, Gorte RJ (1995) Chem Rev 95:615–635

    Article  CAS  Google Scholar 

  30. Brus J, Kobera L, Schoefberger W, Urbanová M, Klein P, Sazama P, Tabor E, Sklenak S, Fishchuk AV, Dědeček J (2015) Angew Chem Int Ed Engl 127:551–555

    Article  Google Scholar 

  31. Yarulina I, De KW, Bailleul S, Goetze J, Radersma M, Abouhamad E, Vollmer I, Goesten M, Mezari B, Hensen E (2018) Nat Chem 10:1

    Article  Google Scholar 

  32. Li JJ (2003) Meinwald rearrangement. Springer, Berlin

    Book  Google Scholar 

  33. Müller S, Liu Y, Vishnuvarthan M, Sun X, Veen ACV, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) J Catal 325:48–59

    Article  Google Scholar 

  34. Tan J, Cui J, Cui X, Deng T, Li X, Zhu Y, Li Y (2015) Acs Catal 5(12):7379–7384

    Article  CAS  Google Scholar 

  35. Shlykov SA, Phien TD, Trang NH (2017) Tetrahedron 73(35):5311–5320

    Article  CAS  Google Scholar 

  36. Sajan D, Lakshmi KU, Erdogdu Y, Joe IH (2011) Spectrochim Acta A 78:113–121

    Article  CAS  Google Scholar 

  37. Sajan D, Joe IH, Jayakumar VS (2010) J Raman Spectrosc 37:508–519

    Article  Google Scholar 

  38. Ying M, Zhang G (2016) Chem Eng J 288:70–78

    Article  Google Scholar 

  39. Jetzki M, Luckhaus D, Signorell R (2004) Rev Can Chim 82:915–924

    Article  CAS  Google Scholar 

  40. Jiang L, Li H, Wang Y, Ma W, Zhong Q (2015) Catal Commun 64:22–26

    Article  CAS  Google Scholar 

  41. Zhang X, Lin L, Zhang T, Liu H, Zhang X (2016) Chem Eng J 284:934–941

    Article  CAS  Google Scholar 

  42. Zhang G, Zhang X, Bai T, Chen T, Fan W (2015) J Energy Chem 24:108–118

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21276127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Zhu, X. & Ma, W. The Propylene Oxide Rearrangement Catalyzed by the Lewis Acid Sites of ZSM-5 Catalyst with Controllable Surface Acidity. Catal Lett 149, 942–949 (2019). https://doi.org/10.1007/s10562-019-02687-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02687-w

Keywords

Navigation