Skip to main content

Advertisement

Log in

Zero-Field Splitting Parameters of Hemin Investigated by High-Frequency and High-Pressure Electron Paramagnetic Resonance Spectroscopy

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We systematically studied the zero-field splitting (ZFS) parameters of Fe(III) protoporphyrin IX chloride, or hemin, using the terahertz electron paramagnetic resonance (EPR) spectroscopy technique at ambient and high pressures. Although hemin is known as a model substance of hemoproteins, the pressure effect on the electronic structure has not yet been explored owing to the large ZFS. In this study, high-field and high-frequency EPR measurements were carried out in the frequency range up to 700 GHz and at hydrostatic pressures up to 2 GPa. At ambient pressure, multiple EPR branches were clearly observed, and the axial and rhombic components of ZFS were determined as \(D = 6.90\pm 0.01\hbox { cm}^{-1}\) and \(E = 0.055 \pm 0.005\hbox { cm}^{-1}\), respectively. Upon pressure application, we observed a systematic shift of the resonance field, indicating a monotonous increase of the axial component from D = 6.9 to 7.9 \(\hbox {cm}^{-1}\) at 2 GPa. The origin of this unusually large shift was discussed from a microscopic viewpoint of the electronic structure of iron under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.R. Milgrom, The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds (Oxford University Press, New York, 1997)

    Google Scholar 

  2. A.N. Vzorov, D.W. Dixon, J.S. Trommel, L.G. Marzilli, R.W. Compans, Antimicrob. Agents Chemother. 46, 3917 (2002)

    Google Scholar 

  3. J.E. Falk, in Porphyrins and Metalloporphyrins, ed. by K.M. Smith (Elsevier, Amsterdam, 1975)

  4. R. Davydov, B.M. Hoffman, J. Biol. Inorg. Chem. 13, 357 (2008)

    Google Scholar 

  5. S. Adachi, S.-Y. Park, J.R.H. Tame, Y. Shiro, N. Shibayama, Proc. Natl. Acad. Sci. U.S.A. 100, 7039 (2003)

    ADS  Google Scholar 

  6. M. Kotani, Ann. N. Y. Acad. Sci. 158, 20 (1969)

    ADS  Google Scholar 

  7. Y. Harada, M. Taguchi, Y. Miyajima, T. Tokushima, Y. Horikawa, A. Chainani, Y. Shiro, Y. Senba, H. Ohashi, H. Fukuyama et al., J. Phys. Soc. Jpn. 78, 044802 (2009)

    ADS  Google Scholar 

  8. D.E. Koenig, Acta Cryst. 18, 663 (1965)

    Google Scholar 

  9. A.R. Champion, H.G. Drickamer, Proc. Natl. Acad. Sci. U.S.A. 58, 876 (1967)

    ADS  Google Scholar 

  10. L. Silver, R.F. George, J.R. Miller, C.A. McCammon, D.J. Evans, G.J. Leigh, Inorg. Chem. 38, 4256 (1999)

    Google Scholar 

  11. M. Blume, Phys. Rev. Lett. 18, 305 (1967)

    ADS  Google Scholar 

  12. O. Galkin, S. Buchter, A. Tabirian, A. Schulte, Biophys. J. 73, 2752 (1997)

    Google Scholar 

  13. M.C. Marden, G.H.B. Hoa, F. Stetzkowski-Marden, Biophys. J. 49, 619 (1986)

    Google Scholar 

  14. I. Morishima, M. Hara, J. Am. Chem. Soc. 104, 6833 (1982)

    Google Scholar 

  15. R. Kitahara, M. Kato, Y. Taniguchi, Protein Sci. 12, 207 (2003)

    Google Scholar 

  16. Y. Miyajima, H. Yashiro, T. Kashiwagi, M. Hagiwara, H. Hori, J. Phys. Soc. Jpn. 73, 280 (2004)

    ADS  Google Scholar 

  17. H. Hori, H. Yashiro, M. Hagiwara, J. Inorg. Biochem. 116, 53 (2012)

    Google Scholar 

  18. J. Nehrkorn, B.M. Martins, K. Holldack, S. Stoll, H. Dobbek, R. Bittl, A. Schnegg, Mol. Phys. 111, 2696 (2013)

    ADS  Google Scholar 

  19. H. Ohta, S. Okubo, T. Sakurai, T. Goto, K. Kirita, K. Ueda, K.Y. Uwatoko, T. Saito, M. Azuma, M. Takano, Phys. B 294–295, 624 (2001)

    ADS  Google Scholar 

  20. A.V. Kornilov, P.J.M. van Bentum, J.S. Brooks, J.S. Qualls, J.A.A.J. Perenboom, V. Pudalov, Synth. Met. 103, 2246 (1999)

    Google Scholar 

  21. T. Sakurai, A. Taketani, T. Tomita, S. Okubo, H. Ohta, Y. Uwatoko, Rev. Sci. Instrum. 78, 065107 (2007)

    ADS  Google Scholar 

  22. T. Sakurai, M. Tomoo, S. Okubo, H. Ohta, K. Kudo, Y. Koike, J. Phys. Conf. Ser. 150, 042171 (2009)

    Google Scholar 

  23. A. Prescimone, C. Morien, D. Allan, J.A. Schlueter, S.W. Tozer, J.K. Manson, S. Parsons, E.K. Brechin, Angew. Chem. Int. Ed. 51, 7490 (2012)

    Google Scholar 

  24. K. Thirunavukkuarasu, S. Winter, C.C. Beedle, A.E. Kovalev, R.T. Oakley, S. Hill, Phys. Rev. B 91, 014412 (2015)

    ADS  Google Scholar 

  25. K. Fujimoto, T. Sakurai, S. Okubo, H. Ohta, K. Matsubayashi, Y. Uwatoko, K. Kudo, Y. Koike, Appl. Magn. Reson. 44, 893 (2013)

    Google Scholar 

  26. T. Sakurai, K. Fujimoto, R. Matsui, K. Kawasaki, S. Okubo, H. Ohta, K. Matsubayashi, Y. Uwatoko, H. Tanaka, J. Magn. Reson. 259, 108 (2015)

    ADS  Google Scholar 

  27. T. Sakurai, R. Matsui, K. Kawasaki, S. Okubo, H. Ohta, Appl. Magn. Reson. 46, 1007 (2015)

    Google Scholar 

  28. T. Sakurai, S. Okubo, H. Ohta, J. Magn. Reson. 280, 3 (2017)

    ADS  Google Scholar 

  29. T. Okamoto, E. Ohmichi, Y. Saito, T. Sakurai, H. Ohta, J. Phys. Chem. B 122, 6880 (2018)

    Google Scholar 

  30. A. Sienkiewicz, J. Krzystek, B. Vileno, G. Chatain, A.J. Kosar, A.S. Bohle, L.J. Forró, J. Am. Chem. Soc. 128, 4534 (2006)

    Google Scholar 

  31. C. Duboc, T. Phoeurg, S. Zein, J. Pécaut, M.-N. Collomb, F. Neese, Inorg. Chem. 46, 4905 (2007)

    Google Scholar 

  32. M. Idešicová, J. Titiš, J. Krzystek, R. Boča, Inorg. Chem. 52, 9409 (2013)

    Google Scholar 

  33. G.C. Brackett, P.L. Richards, W.S. Caughey, J. Chem. Phys. 54, 4383 (1971)

    ADS  Google Scholar 

  34. J.E. Bennett, J.F. Gibson, D.J.E. Ingram, Proc. R. Soc. A 240, 67 (1957)

    ADS  Google Scholar 

  35. M.P. Hendrich, P.G. Debrunner, Biophys. J. 56, 489 (1989)

    Google Scholar 

  36. A.J. Bearden, T.H. Moss, W.S. Caughey, C.A. Beaudreau, Proc. Natl. Acad. Sci. U.S.A. 53, 1246 (1965)

    ADS  Google Scholar 

  37. F. Paulat, N. Lehnert, Inorg. Chem. 47, 4963 (2008)

    Google Scholar 

  38. K. Sakai, H. Masumoto, K. Ichimura, H. Kojima, Appl. Opt. 17, 1709 (1978)

    ADS  Google Scholar 

  39. H. Uenoyama, Biochim. Biophys. Acta Gen. Subj. 230, 479 (1971)

    Google Scholar 

  40. S.E. Stavretis, M. Atanasov, A.A. Podlesnyak, S.C. Hunter, F. Neese, Z.-L. Xue, Inorg. Chem. 54, 9790 (2015)

    Google Scholar 

  41. S.C. Hunter, A.A. Podlesnyak, Z.-L. Xue, Inorg. Chem. 53, 1955 (2014)

    Google Scholar 

  42. J. Nehrkorn, J. Telser, K. Holldack, S. Stoll, A. Schnegg, J. Phys. Chem. B 119, 13816 (2015)

    Google Scholar 

  43. F. Neese, E.I. Solomon, Inorg. Chem. 37, 6568 (1998)

    Google Scholar 

  44. Q.-Z. Lü, Y. Lu, J.-J. Wang, Chin. J. Chem. Phys. 19, 227 (2006)

    Google Scholar 

  45. F. Neese, J. Chem. Phys. 127, 164112 (2007)

    ADS  Google Scholar 

  46. D. Ganyushin, F. Neese, J. Chem. Phys. 125, 024103 (2006)

    ADS  Google Scholar 

  47. R. Takeda, M. Shoji, S. Yamanaka, K. Yamaguchi, Polyhedron 24, 2238 (2005)

    Google Scholar 

  48. J. Krzystek, D. Smirnov, C. Schlegel, J.V. Slageren, J. Telser, A. Ozarowski, J. Magn. Reson. 213, 158 (2011)

    ADS  Google Scholar 

  49. A.S. Brill, F.G. Fiamingo, D.A. Hampton, J. Inorg. Biochem. 28, 137 (1986)

    Google Scholar 

  50. A. Solano-Peralta, J.P. Saucedo-Vazquez, E. Roberto, H. Herbert, E.M. Hassane, G.M. Smith, M.E. Sosa-Torres, Dalton Trans. 9, 1668 (2009)

    Google Scholar 

  51. M. Motokawa, H. Ohta, N. Makita, Int. J. Infrared Millim. Waves 12, 149 (1991)

    ADS  Google Scholar 

  52. S. Kimura, H. Ohta, M. Motokawa, S. Mitsudo, W.-J. Jang, M. Hasegawa, H. Takei, Int. J. Infrared Millim. Waves 17, 833 (1996)

    ADS  Google Scholar 

  53. T. Yonetani, H. Schleyer, J. Biol. Chem. 242, 3926 (1967)

    Google Scholar 

  54. J. Ernst, J. Subramanian, J.-H. Fuhrhop, Z. Naturforsch A. 32, 1129 (1977)

    ADS  Google Scholar 

  55. T. Okamoto, E. Ohmichi, S. Okubo, H. Ohta, J. Phys. Soc. Jpn. 87, 013702 (2018)

    ADS  Google Scholar 

  56. R.G. Alden, J.D. Satterlee, J. Mintrovich, I. Constantindis, M.R. Ondrias, B.I. Swanson, J. Biol. Chem. 264, 1933 (1989)

    Google Scholar 

  57. C. Jung, O. Ristau, H. Schulze, S.G. Sligar, Eur. J. Biochem. 235, 660 (1996)

    Google Scholar 

  58. K. Akasaka, Chem. Rev. 106, 1814 (2006)

    Google Scholar 

  59. L.M. Nguyen, J. Roche, J. Magn. Reson. 277, 179 (2017)

    ADS  Google Scholar 

  60. J. Jonas, L. Ballard, D. Nash, Biophys. J. 75, 445 (1998)

    ADS  Google Scholar 

  61. A. Maeno, D. Sindhikara, F. Hirata, R. Otten, F.W. Dahlquist, S. Yokoyama, K. Akasaka, F.A.A. Mulder, R. Kitahara, Biophys. J. 108, 133 (2015)

    ADS  Google Scholar 

  62. H. Yamada, T. Nagae, N. Watanabe, Acta Crystallogr. Sect. D: Biol. Crystallogr. 71, 742 (2015)

    Google Scholar 

  63. M. Klepacka, K. Bajdor, A. Jezewski, Pol. J. Food Nutr. Sci. 48, 275 (1998)

    Google Scholar 

  64. H. Hori, H. Yashiro, K. Ninomiya, M. Horitani, T. Kida, M. Hagiwara, J. Inorg. Biochem. 105, 1596 (2011)

    Google Scholar 

  65. S.O. Obare, T. Ito, M.H. Balfour, G.J. Meyer, Nano Lett. 3, 1151 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Kobori (Molecular Photoscience Research Center, Kobe University) for fruitful discussions. This study was partly supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 26287081), by a Grant-in-Aid for Scientific Research (C) (Grant No. 26400335), by a Grant-in-Aid for Challenging Exploratory Research (Grant No. 26610104) from JSPS, and by the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Ohta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohmichi, E., Okamoto, T., Sakurai, T. et al. Zero-Field Splitting Parameters of Hemin Investigated by High-Frequency and High-Pressure Electron Paramagnetic Resonance Spectroscopy . Appl Magn Reson 51, 1103–1115 (2020). https://doi.org/10.1007/s00723-020-01239-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01239-5

Navigation