Skip to main content
Log in

An Assessment of the Use of Mesoporous Silica Materials to Improve Pulsed Dipolar Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Protein immobilization in mesoporous silica nanoparticles has attracted much attention due to its wide range of applications. However, it remains largely unexplored how the use of mesopores can alter the spatial distribution of encapsulated biomolecules so as to improve pulsed dipolar spectroscopy sensitivity. Here, we performed electron spin resonance measurements for three different spin-labeled biomolecules (including two different peptides and a protein) encapsulated in various types of mesoporous materials differing in textural properties such as nanochannel length (e.g., 0.2–4 μm) and average pore diameter (e.g., 6–11 nm, approximately). Our results show that biomolecules are clustered somewhat upon the encapsulation into mesopores, and that due to the clustering, instantaneous diffusion plays an important role in the spin relaxation in nanochannels. The extent of molecular clustering exhibits a clear positive correlation with the length of nanochannels, whereas it shows little correlation with pore diameters. Among the materials studied, mesoporous materials with the shortest length of nanochannels are most effective to reduce spin clustering, thus suppressing the unwanted instantaneous diffusion and enhancing spin–spin relaxation time. This study has opened a possibility of improving the quality of pulsed dipolar spectroscopy with mesoporous silica nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Liu, Q.H. Yang, C. Li, Chem. Commun. 51, 13731–13739 (2015)

    Article  Google Scholar 

  2. S. Mitragotri, P.A. Burke, R. Langer, Nat. Rev. Drug Discov. 13, 655–672 (2014)

    Article  Google Scholar 

  3. S. Isaksson, E.B. Watkins, K.L. Browning, T.K. Lind, M. Cardenas, K. Hedfalk, F. Hook, M. Andersson, Nano Lett. 17, 476–485 (2017)

    Article  ADS  Google Scholar 

  4. S. Matsuura, M. Chiba, T. Tsunoda, A. Yamaguchi, J. Nanosci. Nanotechnol. 18, 104–109 (2018)

    Article  Google Scholar 

  5. B.W. Chen, W. Qi, X.L. Li, C.H. Lei, J. Liu, Small 9, 2228–2232 (2013)

    Article  Google Scholar 

  6. C.H. Lee, T.S. Lin, C.Y. Mou, Nano Today 4, 165–179 (2009)

    Article  Google Scholar 

  7. S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582–8594 (2008)

    Article  Google Scholar 

  8. N. Carlsson, H. Gustafsson, C. Thorn, L. Olsson, K. Holmberg, B. Akerman, Adv. Colloid Interface Sci. 205, 339–360 (2014)

    Article  Google Scholar 

  9. M.R. Fleissner, M.D. Bridges, E.K. Brooks, D. Cascio, T. Kalai, K. Hideg, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 108, 16241–16246 (2011)

    Article  ADS  Google Scholar 

  10. J.S. Tong, P.P. Borbat, J.H. Freed, Y.K. Shin, Proc. Natl. Acad. Sci. USA 106, 5141–5146 (2009)

    Article  ADS  Google Scholar 

  11. S.Y. Park, P.P. Borbat, G. Gonzalez-Bonet, J. Bhatnagar, A.M. Pollard, J.H. Freed, A.M. Bilwes, B.R. Crane, Nat. Struct. Mol. Biol. 13, 400–407 (2006)

    Article  Google Scholar 

  12. C.J. Tsai, Y.W. Chiang, J. Phys. Chem. C 116, 19798–19806 (2012)

    Article  Google Scholar 

  13. Y.C. Lai, Y.F. Chen, Y.W. Chiang, PLoS ONE 8, e68264 (2013)

    Article  ADS  Google Scholar 

  14. K.J. Chang, Y.H. Kuo, Y.W. Chiang, J. Phys. Chem. B 121, 4355–4363 (2017)

    Article  Google Scholar 

  15. Y.W. Huang, Y.C. Lai, C.J. Tsai, Y.W. Chiang, Proc. Natl. Acad. Sci. USA 108, 14145–14150 (2011)

    Article  ADS  Google Scholar 

  16. S.A. Kozin, G. Bertho, A.K. Mazur, H. Rabesona, J.P. Girault, T. Haertle, M. Takahashi, P. Debey, G.H.B. Hoa, J. Biol. Chem. 276, 46364–46370 (2001)

    Article  Google Scholar 

  17. Y.W. Huang, Y.W. Chiang, Phys. Chem. Chem. Phys. 13, 17521–17531 (2011)

    Article  Google Scholar 

  18. K.J. Oh, S. Barbuto, N. Meyer, R.S. Kim, R.J. Collier, S.J. Korsmeyer, J. Biol. Chem. 280, 753–767 (2005)

    Article  Google Scholar 

  19. Y.H. Kuo, Y.R. Tseng, Y.W. Chiang, Langmuir 29, 13865–13872 (2013)

    Article  Google Scholar 

  20. C.H. Liu, C.Y. Lin, J.L. Chen, N.C. Lai, C.M. Yang, J.M. Chen, K.T. Lu, J. Catal. 336, 49–57 (2016)

    Article  Google Scholar 

  21. P.H. Ku, C.Y. Hsiao, M.J. Chen, T.H. Lin, Y.T. Li, S.C. Liu, K.T. Tang, D.J. Yao, C.M. Yang, Langmuir 28, 11639–11645 (2012)

    Article  Google Scholar 

  22. M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)

    Article  ADS  Google Scholar 

  23. A. Zecevic, G.R. Eaton, S.S. Eaton, M. Lindgren, Mol. Phys. 95, 1255–1263 (1998)

    Article  ADS  Google Scholar 

  24. R. Dastvan, B.E. Bode, M.P. Karuppiah, A. Marko, S. Lyubenova, H. Schwalbe, T.F. Prisner, J. Phys. Chem. B 114, 13507–13516 (2010)

    Article  Google Scholar 

  25. P.P. Borbat, J.H. Freed, Methods Enzymol. 423, 52–116 (2007)

    Article  Google Scholar 

  26. G. Jeschke, S. Schlick, Phys. Chem. Chem. Phys. 8, 4095–4103 (2006)

    Article  Google Scholar 

  27. S. Ruthstein, A.M. Raitsimring, R. Bitton, V. Frydman, A. Godt, D. Goldfarb, Phys. Chem. Chem. Phys. 11, 148–160 (2009)

    Article  Google Scholar 

  28. S. Ruthstein, A. Potapov, A.M. Raitsimring, D. Goldfarb, J. Phys. Chem. B 109, 22843–22851 (2005)

    Article  Google Scholar 

  29. Y.W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 177, 184–196 (2005)

    Article  ADS  Google Scholar 

  30. Y.W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172, 279–295 (2005)

    Article  ADS  Google Scholar 

  31. E.R. Georgieva, A.S. Roy, V.M. Grigoryants, P.P. Borbat, K.A. Earle, C.P. Scholes, J.H. Freed, J. Magn. Reson. 216, 69–77 (2012)

    Article  ADS  Google Scholar 

  32. A.A. Nevzorov, J.H. Freed, J. Chem. Phys. 115, 2401–2415 (2001)

    Article  ADS  Google Scholar 

  33. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)

    ADS  Google Scholar 

  34. S.Y. Chen, C.Y. Tang, W.T. Chuang, J.J. Lee, Y.L. Tsai, J.C.C. Chan, C.Y. Lin, Y.C. Liu, S.F. Cheng, Chem. Mater. 20, 3906–3916 (2008)

    Article  Google Scholar 

  35. M. Ferdousi, M. Pazouki, F.A. Hessari, M. Kazemzad, J. Porous Mater. 23, 453–463 (2016)

    Article  Google Scholar 

  36. S.Y. Chen, Y.T. Chen, J.J. Lee, S. Cheng, J. Mater. Chem. 21, 5693–5703 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Ministry of Science and Technology of Taiwan (105-2628-M-007-005 and 106-2627-M-007-009) and the Frontier Research Center on Fundamental and Applied Sciences of Matters at NTHU. All of the CW/pulse ESR measurements were conducted in the Research Instrument Center of Taiwan located at NTHU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Wei Chiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, YC., Chang, A., Yang, CM. et al. An Assessment of the Use of Mesoporous Silica Materials to Improve Pulsed Dipolar Spectroscopy. Appl Magn Reson 49, 1201–1216 (2018). https://doi.org/10.1007/s00723-018-1040-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1040-z

Navigation