Skip to main content
Log in

Double Quantum Coherence EPR Reveals the Structure–Function Relationships of the Cardiac Troponin C–Troponin I Complex Regulated by Ca2+ Ions and a Phosphomimetic

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Troponin (Tn) is a protein that consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT), and Tn controls cardiac muscle contraction by calcium ion binding and phosphorylation. The Ca2+-binding site is the E–F hand motif (C helix–loop–D helix) in the N-terminal domain of TnC, and the structural transition induced by Ca2+ is the opening of these helices and the interaction with TnI, probably at the A and B helices. In this paper, we studied structural changes in the TnC–TnI binary complex on Ca2+ binding by double quantum coherence (DQC) distance measurements. We used a binary complex of the cardiac troponin C and I (cTnC and cTnI) complexes, chose four positions of nitroxide spin label at helices A, B, C, and D in the N-terminal domain and chose the E helix in the C-terminal domain as the reference position to study the structural changes on Ca2+ addition. The label positions were (A22C/S98C), (M47C/S98C), (Q58C/S98C), and (C84/S98C) for the A, B, C, and D helices, respectively. The effects of phosphorylation of the cardiac-specific N-terminal region of cTnI were studied using a phosphomimetic cTnI mutant. Analysis of the modulation of the DQC echo signals provided the distribution of the spin–spin distance. The distances averaged over the distribution showed that the labels on the A, B, and C helices decreased, i.e., moved to the E helix, on Ca2+ binding, while the distance of the label on the D helix showed almost no change. Shoulders and/or small separate peaks were observed in the shape of the distribution and were analyzed as the sum of a few Gaussian functions. The Gaussian functions were grouped into two components, components 1 and 2, at the longer and shorter distances, respectively, separated by 0.7–1.5 nm. The fractions of component 2 were ca. 0.1–0.2 in the Ca2+-free state and increased by 0.2–0.3 on Ca2+ addition, suggesting that the increase in component 2 is related to physiological control of cardiac muscle contraction. The phosphomimetic-modification effects on the Ca2+-induced changes of the fraction of components and the distances of the C- and D-helix labels are small. On the other hand, in the A and B helices, there are significant effects on the Ca2+-induced changes in the distances of the components. The different behaviors of A/B and C/D helices support the current model of the phosphorylation effects in which both N-terminal region and regulatory domain of cTnI interact with the A and B helices of cTnC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.S. Zot, J.D. Potter, Ann. Rev. Biophys. Biophys. Chem. 16, 535–559 (1987)

    Article  Google Scholar 

  2. S. Takeda, A. Yamashita, K. Maeda, Y. Maeda, Nature 424, 35–41 (2003)

    Article  ADS  Google Scholar 

  3. M.V. Vinogradova, D.B. Stone, G.G. Malanina, C. Karatzaferi, R. Cooke, R.A. Mendelson, R.J. Fletterick, Proc. Natl. Acad. Sci. USA 102, 5038–5043 (2005)

    Article  ADS  Google Scholar 

  4. J.J. Jayasundar, J. Xing, J.M. Robinson, H.C. Cheung, W.-J. Dong, PLoS One 9, e87135 (2014)

    Article  ADS  Google Scholar 

  5. P.R. Potluri, J. Chamoun, J.A. Cooke, M. Badr, J.A. Guse, R. Rayes, N.M. Cordina, D. McCamey, P.G. Fajer, L.J. Brown, J. Struct. Biol. 200, 376–387 (2017)

    Article  Google Scholar 

  6. N.M. Cordina, C.K. Liew, P.R. Potluri, P.M. Curmi, P.G. Fajer, T.M. Logan, J.P. Mackay, L.J. Brown, PLoS One 9, e112976 (2014)

    Article  ADS  Google Scholar 

  7. P.M. Hwang, F. Cai, S.E. Pineda-Sanabria, D.C. Corson, B.D. Sykes, Proc. Natl. Acad. Sci. USA 111, 14412–14417 (2014)

    Article  ADS  Google Scholar 

  8. D.G. Ward, M.P. Cornes, I.P. Trayer, J. Biol. Chem. 277, 41795–41801 (2002)

    Article  Google Scholar 

  9. C. Dohet, E. Al-Hillawi, I.P. Trayer, J.C. Rüegg, FEBS Lett. 377, 131–134 (1995)

    Article  Google Scholar 

  10. R. Zhang, J. Zhao, A. Mandveno, J.D. Potter, Circ. Res. 76, 1028–1035 (1995)

    Article  Google Scholar 

  11. J.C. Kentish, D.T. McCloskey, J. Layland, S. Palmer, J.M. Leiden, A.F. Martin, R.J. Solaro, Circ. Res. 88, 1059–1065 (2001)

    Article  Google Scholar 

  12. J. Layland, R.J. Solaro, A.M. Shah, Cardiovasc. Res. 66, 12–21 (2005)

    Article  Google Scholar 

  13. W.-J. Dong, J. Xing, M. Villain, M. Hellinger, J.M. Robinson, M. Chandra, R.J. Solaro, P.K. Umeda, H.C. Cheung, J. Biol. Chem. 274, 31382–31390 (1999)

    Article  Google Scholar 

  14. P.P. Borbat, J.H. Freed, in Biological Magnetic Resonance 19, ed. by L.J. Berliner, S.S. Eaton, G.R. Eaton (Kluwer Academic, Dordrecht, 2000), pp. 383–459

    Google Scholar 

  15. P.P. Borbat, H.S. Mchaourab, J.H. Freed, J. Am. Chem. Soc. 124, 5304–5314 (2002)

    Article  Google Scholar 

  16. J. Abe, S. Ueki, T. Arata, S. Yamauchi, Y. Ohba, Appl. Magn. Reson. 42, 473–485 (2012)

    Article  Google Scholar 

  17. G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9, 1895–1910 (2007)

    Article  Google Scholar 

  18. P.G. Fajer, J. Phys. Condens. Matter 17, S1459–S1469 (2005)

    Article  ADS  Google Scholar 

  19. S. Ueki, M. Nakamura, T. Komori, T. Arata, Biochemistry 44, 411–416 (2005)

    Article  Google Scholar 

  20. M. Nakamura, S. Ueki, H. Hara, T. Arata, J. Mol. Biol. 348, 127–137 (2005)

    Article  Google Scholar 

  21. W.-J. Dong, C.-K. Wang, A.M. Gordon, H.C. Cheung, Biophys. J. 72, 850–857 (1997)

    Article  Google Scholar 

  22. C.S. Farah, C.A. Miyamoto, C.H.I. Ramos, A.C.R. Da Silva, R.B. Quaggio, K. Fujimori, L.B. Smillie, F.C. Reinach, J. Biol. Chem. 269, 5230–5240 (1994)

    Google Scholar 

  23. W.-J. Dong, S.S. Rosenfeld, C.-K. Wang, A.M. Gordon, H.C. Cheung, J. Biol. Chem. 271, 688–694 (1996)

    Article  Google Scholar 

  24. T.E. Gillis, C.R. Marshall, X.-H. Xue, T.J. Borgford, G.F. Tibbits, Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1707–R1715 (2000)

    Article  Google Scholar 

  25. Y. Mizuta, S. Kazama, Y. Ohba, N. Sakai, Y. Yamamoto, Y. Shimoyama, Rev. Sci. Inst. 79, 044705 (2008)

    Article  ADS  Google Scholar 

  26. G. Jeschke, G. Panek, A. Godt, A. Bender, H. Paulsen, Appl. Magn. Reson. 26, 223–244 (2004)

    Article  Google Scholar 

  27. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)

    Article  Google Scholar 

  28. Y.-W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172, 279–295 (2005)

    Article  ADS  Google Scholar 

  29. S.K. Sia, M.X. Li, L. Spyracopoulos, S.M. Gagne, W. Liu, J.A. Putkey, B.D. Sykes, J. Biol. Chem. 272, 18216–18221 (1997)

    Article  Google Scholar 

  30. L. Spyracopoulos, M.X. Li, S.K. Sia, S.M. Gagne, M. Chandra, R.J. Solaro, B.D. Sykes, Biochemistry 36, 12138–12146 (1997)

    Article  Google Scholar 

  31. W.T. Heller, N.L. Finley, W.-J. Dong, P. Timmins, H.C. Cheung, P.R. Rosevear, J. Trewhella, Biochemistry 42, 7790–7800 (2003)

    Article  Google Scholar 

  32. D.G. Ward, S.M. Brewer, M.P. Cornes, I.P. Trayer, Biochemistry 42, 10324–10332 (2003)

    Article  Google Scholar 

  33. M.X. Li, L. Spyracopoulos, B.D. Sykes, Biochemistry 38, 8289–8298 (1999)

    Article  Google Scholar 

  34. V. Gaponenko, E. Abusamhadneh, M.B. Abbott, N. Finley, G. Gasmi-Seabrook, R.J. Solaro, M. Rance, P.R. Rosevear, J. Biol. Chem. 274, 16681–16684 (1999)

    Article  Google Scholar 

  35. M.B. Abbott, V. Gaponenko, E. Abusamhadneh, N. Finley, G. Li, A. Dvoretsky, M. Rance, R.J. Solaro, P.R. Rosevear, J. Biol. Chem. 275, 20610–20617 (2000)

    Article  Google Scholar 

  36. J.W. Howarth, J. Meller, R.J. Solaro, J. Trewhella, P.R. Rosevear, J. Mol. Biol. 373, 706–722 (2007)

    Article  Google Scholar 

  37. T. Aihara, M. Nakamura, S. Ueki, H. Hara, M. Miki, T. Arata, J. Biol. Chem. 285, 10671–10677 (2010)

    Article  Google Scholar 

  38. C. Risi, J. Eisner, B. Belknap, D. H. Heeley, H. D. White, G. F. Schröder, V. E. Galkin, Proc. Natl. Acad. Sci. USA 114, 6782-6787

  39. Y. Cheng, S. Lindert, P. Kekenes-Huskey, V.S. Rao, R.J. Solaro, P.R. Rosevear, R. Amaro, A.D. McCulloch, J.A. McCammon, M. Regnier, Biophys. J 107, 1675–1685 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the CREST project of the Japan Science and Technology Agency and was supported in part by cooperative research program no. 2015217 and 20161096 of Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. T.A. was supported in part by a Grant-in-Aid for Scientific Research on the Innovative Area (no. 25117512) from MEXT of Japan. T.A. is grateful to the Collaborative Research Program of Institute for Protein Research, Osaka University, CR -17- 02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiaki Arata or Yasunori Ohba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, J., Ueki, S., Yamauchi, S. et al. Double Quantum Coherence EPR Reveals the Structure–Function Relationships of the Cardiac Troponin C–Troponin I Complex Regulated by Ca2+ Ions and a Phosphomimetic. Appl Magn Reson 49, 893–910 (2018). https://doi.org/10.1007/s00723-018-1031-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1031-0

Navigation