Skip to main content
Log in

Evaluation of the Pore Structure of Reservoirs Based on NMR T 2 Spectrum Decomposition

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) T 2 distributions can be employed to understand the geometry of pores, but they are not sensitive enough to determine pore connectivity. In this paper, the pore space in reservoirs is regarded as a series of different sizes of the combination of spherical pores and cylinder pores based on the pore network model and Sphere–Cylinder model. In terms of the optimized T 2 inversion method, T 2 spectral distribution is decomposed into two groups, sphere pore distribution and cylinder pore distribution. It is assumed that cylinder pore controls the connectivity and permeability of the reservoir and the sphere pore is the main place of fluid storage. The more cylinder pores that exist, the better the connectivity and permeability are. The data of eight core plugs are analyzed using this method, and the results are in accordance with those of core analysis, which proves the practicability of our research and provides a basis for the direct evaluation of reservoir pore structure using NMR T 2 distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.T. Luo, R.C. Wang, Pore Structure of Oil and Gas Reservoir (Beijing Science Press, Beijing, 1986)

    Google Scholar 

  2. K. Verwer, G.P. Eberli, R.J. Weger, AAPG Bull. 95(2), 175–190 (2011)

    Article  Google Scholar 

  3. H.L. Bian, J. Guan, Z.Q. Mao, X.D. Ju, G.Q. Han, Appl. Geophys. 11(4), 374–383 (2014)

    Article  ADS  Google Scholar 

  4. A. Sakhaee-Pour, S.L. Bryant, AAPG Bull. 98(4), 663–694 (2014)

    Article  Google Scholar 

  5. T.Y. Liu, T.Z. Tang, H.H. Du, H.N. Zhang, H.T. Wang, Chin. J. Geophys. (in Chinese) 56(5), 674–684 (2013)

    Article  Google Scholar 

  6. Z.Q. Mao, L. Xiao, Z.N. Wang, J. Yan, X.G. Liu, B. Xie, Appl. Magn. Reson. 44(4), 449–468 (2012)

    Article  Google Scholar 

  7. C.L. Li, C.C. Zhou, L. Xia, F.L. Hu, L. Zhang, W.J. Wang, Appl. Geophys. 7(3), 283–291 (2010)

    Article  ADS  Google Scholar 

  8. R. Rezaee, A. Saeedi, B. Clennell, J. Pet. Sci. Eng. 88–89(2), 92–99 (2012)

    Article  Google Scholar 

  9. A. Valori, F. Ali, A. Al-Zoukani, R. Taherian, NMR Measurements for Pore Size Mapping at Fine Scale, in IPTC 2014: International Petroleum Technology Conference, Session 26: RESERVOIR - Geological Modelling: Formation Evaluation (EAGE, 2014)

  10. C. Lu, Z. Heidari, Quantifying the Impact of Natural Fractures and Pore Structure on NMR Measurements in Multiple-Porosity Systems, in IPTC 2014: International Petroleum Technology Conference, Session 23: E&P Geoscience - Tectonic History and Basin Evolution (EAGE, 2014)

  11. G.R. Coates, L.Z. Xiao, M.G. Prammer, NMR Logging Principles and Applications (Gulf Publishing Company, Texas, 1999)

    Google Scholar 

  12. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19(6), 2446–2453 (1979)

    Article  ADS  Google Scholar 

  13. W.F.J Slijkerman, J.P Hofman, W.J Looyestijn, Y. Volokitin, Petrophysics 42(4):334–343 (2001)

    Google Scholar 

  14. T.Y. Liu, S.M. Wang, R.S. Fu, Oil Geophys. Prospect. 38(3), 328–333 (2003)

    Google Scholar 

  15. Y.D. He, Z.Q. Mao, L.Z. Xiao, X.J. Ren, Chin. J. Geophys. (in Chinese) 48(2), 412–418 (2005)

    Article  Google Scholar 

  16. R.L. Kleinberg, W.E. Kenyon, P.P. Mitra, J. Magn. Reson. 108(2), 206–214 (1994)

    Article  ADS  Google Scholar 

  17. R.L. Kleinberg, M.A. Horsfield, J. Magn. Reson. 1990(88), 9–19 (1969)

    Google Scholar 

  18. K.J. Dunn, D.J. Bergman, G.A. Latorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications (Elsevier Science, Pergamon, 2002)

    Google Scholar 

  19. B. Kenyon, R. Kleinberg, C. Straley, G. Gubelin, C. Morriss, Oilfield Rev. 7(3), 19–33 (1995)

    Google Scholar 

  20. E. Grunewald, R. Knight, Geophysics 74(6), E215 (2009)

    Article  ADS  Google Scholar 

  21. I. Fatt, The Network Model of Porous Media. I, II & Iii, Petrol Trans Aime. 207:144–177 (1956)

  22. W. Kewen, L. Ning, Appl. Geophys. 5(2), 86–91 (2008)

    Article  ADS  Google Scholar 

  23. T.Y. Liu, L.Z. Xiao, R.S. Fu, Z.D. Wang, Chin. J. Geophys. (in Chinese) 47(4), 663–671 (2004)

    Google Scholar 

  24. C.C. Zhou, T.Y. Liu, Acta Pet. Sin. 27(1), 92 (2006)

    Google Scholar 

  25. T.Y. Liu, C.C. Zhou, Z.T. Ma, G.Q Liu, J. Tongji Univ. (Nat. Sci. Ed.) 34(11), 1464–1469 (2007)

    Google Scholar 

  26. X. Ge, Y. Fan, Y. Cao, Y. Xu, X. Liu, Y. Chen, Appl. Magn. Reson. 2, 155–167 (2014)

    Article  Google Scholar 

  27. M.R. Hestenes, E. Stiefel, J. Res. Natl. Bur. Stand. 49(6), 99–147 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National 863 Program (2006AA06Z214), Natural Science Foundation of China (41476027), National Major Project of Technology and Science (2011ZX05007-006), CNPC Research Project (2011B-4000). All research funding support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Fei Wang.

Appendix 1

Appendix 1

The conjugate gradient (CG) method is proposed by Hesteness and Stiefel for solving linear system of equations [27]. Here, we use this method to inverse the relaxation signal to obtain T 2 distribution.

As mentioned previously, the observed relaxation signal is modeled as multi-exponential decay:

$$\begin{array}{*{20}c} {{\text{echo}}_{1} = \varphi_{1} e^{{{\raise0.7ex\hbox{${ - t_{1} }$} \!\mathord{\left/ {\vphantom {{ - t_{1} } {T_{2,1} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,1} }$}}}} + \varphi_{2} e^{{{\raise0.7ex\hbox{${ - t_{1} }$} \!\mathord{\left/ {\vphantom {{ - t_{1} } {T_{2,2} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,2} }$}}}} + \cdots + \varphi_{n} e^{{{\raise0.7ex\hbox{${ - t_{1} }$} \!\mathord{\left/ {\vphantom {{ - t_{1} } {T_{2,n} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,n} }$}}}} } \\ {{\text{echo}}_{2} = \varphi_{1} e^{{{\raise0.7ex\hbox{${ - t_{2} }$} \!\mathord{\left/ {\vphantom {{ - t_{2} } {T_{2,1} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,1} }$}}}} + \varphi_{2} e^{{{\raise0.7ex\hbox{${ - t_{2} }$} \!\mathord{\left/ {\vphantom {{ - t_{2} } {T_{2,2} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,2} }$}}}} + \cdots + \varphi_{n} e^{{{\raise0.7ex\hbox{${ - t_{2} }$} \!\mathord{\left/ {\vphantom {{ - t_{2} } {T_{2,n} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,n} }$}}}} } \\ { \cdots \quad \quad \quad \quad \quad \cdots \quad \quad \quad \quad \quad \quad \cdots \quad \quad \quad } \\ {{\text{echo}}_{m} = \varphi_{1} e^{{{\raise0.7ex\hbox{${ - t_{m} }$} \!\mathord{\left/ {\vphantom {{ - t_{m} } {T_{2,1} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,1} }$}}}} + \varphi_{2} e^{{{\raise0.7ex\hbox{${ - t_{m} }$} \!\mathord{\left/ {\vphantom {{ - t_{m} } {T_{2,2} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,2} }$}}}} + \cdots + \varphi_{n} e^{{{\raise0.7ex\hbox{${ - t_{m} }$} \!\mathord{\left/ {\vphantom {{ - t_{m} } {T_{2,n} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${T_{2,n} }$}}}} } \\ \end{array}$$
(12)

where m and n are echo number and T 2 bin set number, respectively; t i (i = 1,2,,m) is the measured time of i-th echo, which is the integer multiple of inter-echo spacing time T E; T 2j (j = 1,2,…,n) is the bin set value with equal space after taking logarithm.

Equation (12) can be rewritten as:

$$\begin{array}{*{20}l} {b_{m \times 1} = A_{m \times n} x_{n \times 1} } \hfill \\ {\lg \left( {T_{2j} } \right) = \lg \left( {T_{2\hbox{min} } } \right) + \frac{j - 1}{n - 1}\left( {\lg \left( {T_{2\hbox{max} } } \right) - \lg \left( {T_{2\hbox{min} } } \right)} \right)} \hfill \\ {b_{m \times 1} = \left( {{\text{echo}}_{1} ,{\text{echo}}_{2} , \ldots ,{\text{echo}}_{m} } \right)^{T} ,\quad x_{n \times 1} = \left( {\varphi_{1} ,\varphi_{2} , \ldots ,\varphi_{n} } \right)^{T} } \hfill \\ {A_{m \times n} = \left[ {\begin{array}{*{20}c} {e^{{{{ - t_{1} } \mathord{\left/ {\vphantom {{ - t_{1} } {T_{21} }}} \right. \kern-0pt} {T_{21} }}}} } & {e^{{{{ - t_{1} } \mathord{\left/ {\vphantom {{ - t_{1} } {T_{22} }}} \right. \kern-0pt} {T_{22} }}}} } & \cdots & {e^{{{{ - t_{1} } \mathord{\left/ {\vphantom {{ - t_{1} } {T_{2n} }}} \right. \kern-0pt} {T_{2n} }}}} } \\ {e^{{{{ - t_{2} } \mathord{\left/ {\vphantom {{ - t_{2} } {T_{21} }}} \right. \kern-0pt} {T_{21} }}}} } & {e^{{{{ - t_{2} } \mathord{\left/ {\vphantom {{ - t_{2} } {T_{22} }}} \right. \kern-0pt} {T_{22} }}}} } & \cdots & {e^{{{{ - t_{2} } \mathord{\left/ {\vphantom {{ - t_{2} } {T_{2n} }}} \right. \kern-0pt} {T_{2n} }}}} } \\ \vdots & \vdots & \ddots & \vdots \\ {e^{{{{ - t_{m} } \mathord{\left/ {\vphantom {{ - t_{m} } {T_{21} }}} \right. \kern-0pt} {T_{21} }}}} } & {e^{{{{ - t_{m} } \mathord{\left/ {\vphantom {{ - t_{m} } {T_{22} }}} \right. \kern-0pt} {T_{22} }}}} } & \cdots & {e^{{{{ - t_{m} } \mathord{\left/ {\vphantom {{ - t_{m} } {T_{2n} }}} \right. \kern-0pt} {T_{2n} }}}} } \\ \end{array} } \right]} \hfill \\ \end{array}$$
(13)

The algorithm flow of conjugate gradient method can be summarized as:

  1. 1.

    Initializing: x 0 ∈ R n, r 0 = b − Ax 0, d 0 = A T r 0, the maximum iterations k max , the error constant err; k = 0, begin the iteration;

  2. 2.

    If ||r k || < err, terminate the iteration and output x k ; otherwise, go on;

  3. 3.

    α k  = A T r 2 k−1 /Ad 2 k−1 , x k  = x k−1 + α k d k−1, r k  = r k−1 − α k Ad k−1;

  4. 4.

    β k  = ‖A T r k 2/‖Ar k−12, d k  = A T r k  + β k d k−1;

  5. 5.

    k = k+1; go back to 2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FF., Tang, TZ., Liu, TY. et al. Evaluation of the Pore Structure of Reservoirs Based on NMR T 2 Spectrum Decomposition. Appl Magn Reson 47, 361–373 (2016). https://doi.org/10.1007/s00723-015-0747-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0747-3

Keywords

Navigation