Skip to main content
Log in

High-Pressure EPR Spectroscopy Studies of the E. coli Lipopolysaccharide Transport Proteins LptA and LptC

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The use of pressure is an advantageous approach to the study of protein structure and dynamics, because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop–four-gap resonator required for the initial high-pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli, LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Akasaka, Chem. Rev. 106, 1814 (2006)

    Article  Google Scholar 

  2. K. Akasaka, R. Kitahara, Y.O. Kamatari, Arch. Biochem. Biophys. 531, 110 (2013)

    Article  Google Scholar 

  3. E. von Goldammer, J. Paul, H.R. Wenzel, in Bioactive Spin Labels, ed. by R.I. Zhdanov (Springer, Berlin, 1992), pp. 611–630

    Chapter  Google Scholar 

  4. M.T. Lerch, Z. Yang, C. Altenbach, W.L. Hubbell, Methods Enzymol. 564, 29 (2015)

    Article  Google Scholar 

  5. M.T. Lerch, Z. Yang, E.K. Brooks, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 111, E1201 (2014)

    Article  ADS  Google Scholar 

  6. M.T. Lerch, C.J. Lopez, Z. Yang, M.J. Kreitman, J. Horwitz, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 112, E2437 (2015)

    Article  ADS  Google Scholar 

  7. M.T. Lerch, J. Horwitz, J. McCoy, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 110, E4714 (2013)

    Article  ADS  Google Scholar 

  8. J. McCoy, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 108, 1331 (2011)

    Article  ADS  Google Scholar 

  9. D.R. Davydov, Z. Yang, N. Davydova, J.R. Halpert, W.L. Hubbell, Biophys. J. 110, 1485 (2016)

    Article  ADS  Google Scholar 

  10. J.S. Hyde, W. Froncisz, US4,480,239 (1984)

  11. H. Nikaido, Microbiol. Mol. Biol. Rev. 67, 593 (2003)

    Article  Google Scholar 

  12. P. Sperandeo, G. Deho, A. Polissi, Biochim. Biophys. Acta 1791, 594 (2009)

    Article  Google Scholar 

  13. Z. Zhou, K.A. White, A. Polissi, C. Georgopoulos, C.R. Raetz, J. Biol. Chem. 273, 12466 (1998)

    Article  Google Scholar 

  14. M.P. Bos, B. Tefsen, J. Geurtsen, J. Tommassen, Proc. Natl. Acad. Sci. USA 101, 9417 (2004)

    Article  ADS  Google Scholar 

  15. S. Narita, H. Tokuda, FEBS Lett. 583, 2160 (2009)

    Article  Google Scholar 

  16. N. Ruiz, L.S. Gronenberg, D. Kahne, T.J. Silhavy, Proc. Natl. Acad. Sci. USA 105, 5537 (2008)

    Article  ADS  Google Scholar 

  17. N. Ruiz, D. Kahne, T.J. Silhavy, Nat. Rev. Microbiol. 7, 677 (2009)

    Article  Google Scholar 

  18. P. Sperandeo, R. Cescutti, R. Villa, C. Di Benedetto, D. Candia, G. Deho, A. Polissi, J. Bacteriol. 189, 244 (2007)

    Article  Google Scholar 

  19. T. Wu, A.C. McCandlish, L.S. Gronenberg, S.S. Chng, T.J. Silhavy, D. Kahne, Proc. Natl. Acad. Sci. USA 103, 11754 (2006)

    Article  ADS  Google Scholar 

  20. R. Villa, A.M. Martorana, S. Okuda, L.J. Gourlay, M. Nardini, P. Sperandeo, G. Deho, M. Bolognesi, D. Kahne, A. Polissi, J. Bacteriol. 195, 1100 (2013)

    Article  Google Scholar 

  21. S. Okuda, E. Freinkman, D. Kahne, Science 338, 1214 (2012)

    Article  ADS  Google Scholar 

  22. W.L. Hubbell, D.S. Cafiso, C. Altenbach, Nat. Struct. Biol. 7, 735 (2000)

    Article  Google Scholar 

  23. C. Altenbach, C.J. Lopez, K. Hideg, W.L. Hubbell, Methods Enzymol. 564, 59 (2015)

    Article  Google Scholar 

  24. C.S. Klug, J.B. Feix, Biophysical Tools for Biologists, Volume One, in Vitro Techniques, ed. by J.J. Correia, H.W. Detrich (Academic Press, Oxford, 2008), pp. 617–658

    Google Scholar 

  25. J.A. Merten, K.M. Schultz, C.S. Klug, Protein Sci. 21, 211 (2012)

    Article  Google Scholar 

  26. K.M. Schultz, J.B. Feix, C.S. Klug, Protein Sci. 22, 1639 (2013)

    Article  Google Scholar 

  27. L.E. Davis, P.E. Smith, Electon Lett. 28, 4 (1992)

    Article  Google Scholar 

  28. K.M. Schultz, T.J. Lundquist, C.S. Klug, Protein Sci. 26, 1517 (2017)

    Article  Google Scholar 

  29. W.L. Hubbell, Hubbell Lab Software. http://www.biochemistry.ucla.edu/biochem/Faculty/Hubbell/. Accessed 2017

  30. M.D. Suits, P. Sperandeo, G. Deho, A. Polissi, Z. Jia, J. Mol. Biol. 380, 476 (2008)

    Article  Google Scholar 

  31. E. Freinkman, S. Okuda, N. Ruiz, D. Kahne, Biochemistry 51, 4800 (2012)

    Article  Google Scholar 

  32. B.E. Bode, D. Margraf, J. Plackmeyer, G. Durner, T.F. Prisner, O. Schiemann, J. Am. Chem. Soc. 129, 6736 (2007)

    Article  Google Scholar 

  33. A.D. Milov, A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 15, 107 (1998)

    Article  Google Scholar 

  34. A.D. Milov, A.B. Ponomarev, Yu.D. Tsvetkov, Chem. Phys. Lett. 110, 67 (1984)

    Article  ADS  Google Scholar 

  35. Q. Luo, X. Yang, S. Yu, H. Shi, K. Wang, L. Xiao, G. Zhu, C. Sun, T. Li, D. Li, X. Zhang, M. Zhou, Y. Huang, Nat. Struct. Mol. Biol. 24, 469 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jason W. Sidabras and Richard R. Mett for resonator calculations, Matthew Fischer and Kyler Crawford for laboratory assistance, and Jimmy B. Feix for critically reading the manuscript. We also gratefully acknowledge helpful discussions with, and dissemination of the high-pressure EPR methodology by, Wayne L. Hubbell and Michael T. Lerch. Research reported in this publication was supported by the National Institute of Health Grants GM108817 (CSK), RR022422 and OD011937 (DEER instrumentation), and EB001980 (National Biomedical EPR Center at MCW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candice S. Klug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, K.M., Klug, C.S. High-Pressure EPR Spectroscopy Studies of the E. coli Lipopolysaccharide Transport Proteins LptA and LptC. Appl Magn Reson 48, 1341–1353 (2017). https://doi.org/10.1007/s00723-017-0948-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0948-z

Navigation