Skip to main content

Advertisement

Log in

Assessing Renal Ischemia/Reperfusion Injury in Mice Using Time-Dependent BOLD and DTI at 9.4 T

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The primary goal of this study was to quantitatively assess regional changes in function and pathophysiological characteristics in renal ischemia/reperfusion (IR)-injured mice and compare data obtained at baseline and following injury. The second goal was to correlate blood oxygenation level-dependent (BOLD) and diffusion tensor imaging (DTI) data obtained in renal IR-injured mice at baseline using time-dependent scans. The analyses were conducted using a mouse model of IR injury. T2*, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) values were acquired to pathophysiologically evaluate three renal regions. The T2* values obtained in the renal cortex and medulla demonstrated no significant differences between baseline and after IR injury. According to DTI results, ADC values in both renal regions were significantly lower at 0 h, and then gradually increased within 48 h. The FA values of both renal regions decreased at 0 h, and then gradually increased by 8 h after IR injury. BOLD and DTI correlations were not significant in renal cortex. However, significantly positive correlations were found between baseline and time-dependent data obtained from renal medulla of IR-injured kidneys. Our current findings suggest that magnetic resonance imaging could be used to obtain pathophysiological data from separate renal compartments in IR-injured mice. Hence, BOLD and DTI may also provide functional and pathophysiological data on allograft status following kidney transplant without the need to use a contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.V. Bonventre, L. Yang, J. Clin. Invest. 121(11), 4210–4221 (2011)

    Article  Google Scholar 

  2. A.M. Sheridan, J.V. Bonventre, Curr. Opin. Nephrol. Hypertens. 9(4), 427–434 (2000)

    Article  Google Scholar 

  3. H. Boom, M.J.K. Mallat, J.W. de Fijter, A.H. Zwinderman, L.C. Paul, Kidney Int. 58, 859–866 (2000)

    Article  Google Scholar 

  4. F. Moreso, D. Serón, S. Gil-Vernet, L. Riera, X. Fulladosa, R. Ramos, J. Alsina, J.M. Grinyó, Nephrol. Dial. Transplant. 14(4), 930–935 (1999)

    Article  Google Scholar 

  5. R. Böhmová, O. Viklický, Folia Microbiol. 46, 267–276 (2001)

    Article  Google Scholar 

  6. D. Dragun, U. Hoff, J.K. Park, Y. Qun, W. Schneider, F.C. Luft, H. Haller, Kidney Int. 60, 1173–1181 (2001)

    Article  Google Scholar 

  7. M. Brezis, S. Rosen, N. Engl, J. Med. 332, 647–655 (1995)

    Google Scholar 

  8. K. Aukland, J. Krog, Nature 188, 671 (1960)

    Article  ADS  Google Scholar 

  9. K.U. Eckardt, W.W. Bernhardt, A. Weidemann, C. Warnecke, C. Rosenberger, M.M. Wiesener, C. Willam, Kidney Int. 68, S46–S51 (2005)

    Article  Google Scholar 

  10. R.R. Perrella, A.J. Duerinckx, F.N. Tessier, G.M. Danovitch, A. Wilkinson, S. Gonzalez, A.H. Cohen, E.G. Grant, Am. J. Kidney Dis. 15(6), 544–550 (1990)

    Article  Google Scholar 

  11. Y. Agmon, H. Peleg, Z. Greenfeld, S. Rosen, M. Brezis, J. Clin. Invest. 94(3), 1069–1075 (1994)

    Article  Google Scholar 

  12. J.R. Chapman, P.J. O’Connell, B.J. Nankivell, J. Am. Soc. Nephrol. 16(10), 3015–3026 (2005)

    Article  Google Scholar 

  13. P.V. Prasad, R.R. Edelman, F.H. Epstein, Circulation 94, 3271–3275 (1996)

    Article  Google Scholar 

  14. P.V. Prasad, A. Priatna, K. Spokes, F.H. Epstein, J. Magn. Reson. Imaging 13(5), 744–747 (2001)

    Article  Google Scholar 

  15. L. Juillard, L.O. Lerman, D.G. Kruger, J.A. Haas, B.C. Rucker, J.A. Polzin, S.J. Riederer, J.C. Romero, Kidney Int. 65, 944–950 (2004)

    Article  Google Scholar 

  16. M. Oostendorp, E.E. de Vries, J.M.G.M. Slenter, C.J. Peutz-Kootstra, M.G. Snoeijs, M.J. Post, L.W.E. van Heurn, W.H. Backes, NMR Biomed. 24(2), 194–200 (2011)

    Article  Google Scholar 

  17. M. Haque, T. Franklin, P. Prasad, J. Magn. Reson. Imaging 33(4), 898–901 (2011)

    Article  Google Scholar 

  18. W.J. Yin, F. Liu, X.M. Li, L. Yang, S. Zhao, Z.X. Huang, Y.Q. Huang, R.B. Liu, Eur. J. Radiol. 81(7), 1426–1431 (2012)

    Article  Google Scholar 

  19. L.-P. Li, L.J. Ji, S. Lindsay, P.V. Prasad, J. Magn. Reson. Imaging 25, 635–638 (2007)

    Article  Google Scholar 

  20. D. LeBihan, E. Breton, D. Lallemand, M.L. Aubin, J. Vignaud, M. Laval-Jeantet, Radiology 168(2), 497–505 (1988)

    Article  Google Scholar 

  21. A.S. Liu, J.X. Xie, J. Magn. Reson. Imaging 17(6), 683–693 (2003)

    Article  MathSciNet  Google Scholar 

  22. J.S. Cheung, S.J. Fan, A.M. Chow, J. Zhang, K. Man, E.X. Wu, NMR Biomed. 23(5), 496–502 (2010)

    Article  Google Scholar 

  23. A. Priatna, F.H. Epstein, K. Spokes, P.V. Prasad, J. Magn. Reson. Imaging 9(6), 842–846 (1999)

    Article  Google Scholar 

  24. M. Ries, F. Basseau, B. Tyndal, R. Jones, C. Deminière, B. Catargi, C. Combe, C.W.T. Moonen, N. Grenier, J. Magn. Reson. Imaging 17(1), 104–113 (2003)

    Article  Google Scholar 

  25. A. Djamali, E.A. Sadowski, R.J. Muehrer, S. Reese, C. Smavatkul, A. Vidyasagar, S.B. Fain, R.C. Lipscomb, D.H. Hullett, M. Samaniego-Picota, T.M. Grist, B.N. Becker, Am. J. Physiol. Renal. Physiol. 292, F513–F522 (2007)

    Article  Google Scholar 

  26. L. Mannelli, J.H. Maki, S.F. Osman, H. Chandarana, D.J. Lomas, W.P. Shuman, K.F. Linnau, D.E. Green, G. Laffi, M. Moshiri, Curr. Urol. Rep. 13(1), 99–107 (2012)

    Article  Google Scholar 

  27. B. Taouli, R.K. Thakur, L. Mannelli, J.S. Babb, S. Kim, E.M. Hecht, V.S. Lee, G.M. Israel, Radiology 251(2), 398–407 (2009)

    Article  Google Scholar 

  28. K. Hueper, M. Gutberlet, T. Rodt, W. Gwinner, F. Lehner, F. Wacker, M. Galanski, D. Hartung, Eur. Radiol. 21(11), 2427–2433 (2011)

    Article  Google Scholar 

  29. T.A. Powers, C.H. Lorenz, G.E. Holburn, R.R. Price, Radiology 178(2), 543–548 (1991)

    Article  Google Scholar 

  30. M. Notohamiprodjo, M.F. Reiser, S.P. Sourbron, Eur. J. Radiol. 76(3), 337–347 (2010)

    Article  Google Scholar 

  31. C. Santosh, D. Brennan, C. McCabe, I.M. Macrae, W.M. Holmes, D.I. Graham, L. Gallagher, B. Condon, D.M. Hadley, K.W. Muir, W. Gsell, J. Cer. Blood. Flow. Metab. 28, 1742–1753 (2008)

    Article  Google Scholar 

  32. S. Pazahr, A. Boss, C. Rossi, Curr. Radiol. Rep. 1(2), 115–125 (2013)

    Article  Google Scholar 

  33. M.I. Kettunen, O.H.J. Gröhn, M.J. Silvennoinen, M. Penttonen, R.A. Kauppinen, J. Cereb. Blood Flow Metab. 22, 262–270 (2002)

    Article  Google Scholar 

  34. A. Pohlmann, K. Arakelyan, J. Hentschel, K. Cantow, B. Flemming, M. Ladwig, S. Waiczies, E. Seeliger, T. Niendorf, Invest. Radiol. 49(8), 547–560 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of 2014-602 and 2014-7004 from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number : HI14C1090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Cheol Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, DC., Kim, N., Lee, DW. et al. Assessing Renal Ischemia/Reperfusion Injury in Mice Using Time-Dependent BOLD and DTI at 9.4 T. Appl Magn Reson 46, 709–722 (2015). https://doi.org/10.1007/s00723-015-0668-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0668-1

Keywords

Navigation