Skip to main content
Log in

Effect of repetitive visual training in patients with dry age-related macular degeneration

Wirkung von repetitivem visuellem Training bei Patienten mit trockener altersbedingter Makuladegeneration

  • main topic
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Summary

Purpose

To investigate the efficacy of repetitive visual training with large-field visual stimulation for patients with dry age-related macular degeneration (AMD).

Methods

The Medical Eye Trainer (MET) was tested on 11 patients with unilateral or bilateral dry AMD. The MET consists of a training system for the entire visual system. A moving grating stimulus was presented on a hand-held visual display device (tablet). Repetitive visual training was performed once per day for 90 s, for a total duration of 3 months.

Results

The MET was able to significantly improve visual function after 3 months of use. Eight of the 11 patients reported an improvement in general well-being. No negative effects were reported.

Conclusion

The MET represents an effective additional treatment option for patients with dry AMD, without neglecting well-established treatment methods.

Zusammenfassung

Ziel der Arbeit

Ziel der vorliegenden Studie war es, die Wirksamkeit von repetitivem visuellem Training mit großflächiger visueller Stimulation bei Patienten mit trockener altersbedingter Makuladegeneration (AMD) zu untersuchen.

Methoden

An 11 Patienten mit unilateraler oder bilateraler trockener AMD wurde der Medical Eye Trainer (MET) getestet. Der MET besteht aus einem Trainingssystem für das gesamte visuelle System. Dabei wurde ein bewegliches Gitter als Stimulus auf einem tragbaren Gerät mit Bildschirm präsentiert (Tablet). Das repetitive visuelle Training erfolgte einmal am Tag für 90 s, die Gesamtdauer betrug 3 Monate.

Ergebnisse

Der MET war in der Lage, die visuelle Funktion nach 3‑monatiger Verwendung signifikant zu verbessern. Eine Verbesserung des allgemeinen Wohlbefindens gaben 8 der 11 Patienten an. Es wurden keine negativen Wirkungen festgestellt.

Schlussfolgerung

Der MET stellt eine effektive zusätzliche Behandlungsoption für Patienten mit trockener AMD dar, ohne dass dabei etablierte Behandlungsmethoden vernachlässigt würden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

AREDS:

Age-Related Eye Diseases Study

BCVA:

Best-corrected visual acuity

MET:

Medical Eye Trainer

OCT:

Optical coherence tomography

VEGF:

Vascular endothelial growth factor

References

  1. Fernández-Robredo P, Sancho A, Johnen S, Recalde S, Gama N, Thumann G, et al. Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering. J Ophthalmol. 2014; https://doi.org/10.1155/2014/510285.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mantel I, Gillies MC, Souied EH. Switching between ranibizumab and aflibercept for the treatment of neovascular age-related macular degeneration. Surv Ophthalmol. 2018;63:638–45.

    Article  Google Scholar 

  3. Volz C, Pauly D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur J Pharm Biopharm. 2015;95:158–72.

    Article  CAS  Google Scholar 

  4. Arnold JJ. Age-related macular degeneration: anti-vascular endothelial growth factor treatment. BMJ Clin Evid. 2016;2016:701. http://www.ncbi.nlm.nih.gov/pubmed/26909890, cited 2018 Dec 6.

    PubMed  PubMed Central  Google Scholar 

  5. Wang L, Zhang C, Hua R. Clinical effectiveness of ranibizumab and conbercept for neovascular age-related macular degeneration: a meta-analysis. Drug Des Devel Ther. 2018;12:3625–33. https://www.dovepress.com/clinical-effectiveness-of-ranibizumab-and-conbercept-for-neovascular-a-peer-reviewed-article-DDDT.

    Article  CAS  Google Scholar 

  6. Chew EY, Clemons T, SanGiovanni JP, Danis R, Domalpally A, McBee W, et al. The Age-related Eye Disease Study 2 (AREDS2). Ophthalmology. 2012;119:2282–9. https://linkinghub.elsevier.com/retrieve/pii/S0161642012004538.

    Article  Google Scholar 

  7. Liew G, Joachim N, Mitchell P, Burlutsky G, Wang JJ. Validating the AREDS simplified severity scale of age-related macular degeneration with 5‑ and 10-year incident data in a population-based sample. Ophthalmology. 2016;123:1874–8.

    Article  Google Scholar 

  8. Gorusupudi A, Nelson K, Bernstein PS. The Age-related eye disease 2 study: micronutrients in the treatment of macular degeneration. Adv Nutr. 2017;8:40–53. https://academic.oup.com/advances/article/8/1/40-53/4566582.

    Article  CAS  Google Scholar 

  9. Crotty M, van den Berg M, Hayes A, Chen C, Lange K, George S. Hemianopia after stroke: a randomized controlled trial of the effectiveness of a standardised versus an individualized rehabilitation program, on scanning ability whilst walking1. NRE. 2018;43:201–9. http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/NRE-172377.

    Article  Google Scholar 

  10. Holmes JM, Manny RE, Lazar EL, Birch EE, Kelly KR, Summers AI, et al. A randomized trial of binocular dig rush game treatment for amblyopia in children aged 7 to 12 years of age. Ophthalmology. 2018; https://doi.org/10.1016/j.ophtha.2018.10.032.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Simonsz-Tóth B, Joosse MV, Besch D. Refractive adaptation and efficacy of occlusion therapy in untreated amblyopic patients aged 12 to 40 years. Graefes Arch Clin Exp Ophthalmol. 2018; https://doi.org/10.1007/s00417-018-4170-y.

    Article  PubMed  Google Scholar 

  12. Frolov AA, Mokienko O, Lyukmanov R, Biryukova E, Kotov S, Turbina L, et al. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front Neurosci. 2017;11:400.

    Article  Google Scholar 

  13. Georgievski Z, Koklanis K, Leone J. Orthoptists’ management of amblyopia—a case-based survey. Strabismus. 2007;15:197–203. http://www.ncbi.nlm.nih.gov/pubmed/18058356.

    Article  Google Scholar 

  14. Bach M, Ullrich D. Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res. 1997;37:1845–9. http://www.ncbi.nlm.nih.gov/pubmed/9274769.

    Article  CAS  Google Scholar 

  15. Vottonen P, Kaarniranta K, Pääkkönen A, Tarkka IM. Visual processing in patients with age-related macular degeneration performing a face detection test. Clin Ophthalmol. 2017;11:1245–52. https://www.dovepress.com/visual-processing-in-patients-with-age-related-macular-degeneration-pe-peer-reviewed-article-OPTH.

    Article  Google Scholar 

  16. O’Brien J, Bloomfield SA. Plasticity of retinal gap junctions: roles in synaptic physiology and disease. Annu Rev Vis Sci. 2018;4:79–100. https://doi.org/10.1146/annurev-vision-091517-034133.

    Article  PubMed  Google Scholar 

  17. Jones BW, Marc RE, Pfeiffer RL. Retinal degeneration, remodeling and plasticity. In: Kolb H, Fernandez E, Nelson R R, editors. Source webvision: the organization of the retina and visual system. Salt Lake City: University of Utah Health Sciences Center; 1995.

    Google Scholar 

  18. Taylor DJ, Smith ND, Crabb DP. Searching for objects in everyday scenes: measuring performance in people with dry age-related macular degeneration. Investig Opthalmol Vis Sci. 2017;58:1887.

    Article  Google Scholar 

  19. Bouws J, Pauleikhoff D, Lemmen KD, Heimes B, Adolphs C. Analysis of anti-VEGF Intravitreal injection treatment in clinical practice. Klin Monbl Augenheilkd. 2016;233:1049–55. https://doi.org/10.1055/s-0042-107153.

    Article  CAS  PubMed  Google Scholar 

  20. Wiesinger K, Reinelt P, Ennemoser A, Edelmayr M, Schönherr U. Was bringt die Anti-VEGF-Therapie im Klinikalltag? Ophthalmologe. 2017;114:639–45. https://doi.org/10.1007/s00347-016-0389-3.

    Article  CAS  PubMed  Google Scholar 

  21. Balasubramanian R, Gan L. Development of retinal amacrine cells and their dendritic stratification. Curr Ophthalmol Rep. 2014;2:100–6.

    Article  Google Scholar 

  22. Guymer RH, Wu Z, Hodgson LAB, Caruso E, Brassington KH, Tindill N, et al. Subthreshold nanosecond laser intervention in age-related macular degeneration. Ophthalmology. 2018; https://doi.org/10.1016/j.ophtha.2018.09.015.

    Article  PubMed  Google Scholar 

  23. Robinson DG, Margrain TH, Dunn MJ, Bailey C, Binns AM. Low-level nighttime light therapy for age-related macular degeneration: a randomized clinical trial. Investig Opthalmology Vis Sci. 2018;59:4531. https://doi.org/10.1167/iovs.18-24284.

    Article  CAS  Google Scholar 

  24. Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol. 2018; https://doi.org/10.1177/2515841418774433.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hörantner.

Ethics declarations

Conflict of interest

R. Hörantner, J. Wolfsgruber, G  Stürzlinger, M. Ring, and T. Haslwanter declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hörantner, R., Wolfsgruber, J., Stürzlinger, G. et al. Effect of repetitive visual training in patients with dry age-related macular degeneration. Spektrum Augenheilkd. 35, 11–15 (2021). https://doi.org/10.1007/s00717-020-00451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-020-00451-9

Keywords

Schlüsselwörter

Navigation