Skip to main content
Log in

Segregation of the amphitelically attached univalent X chromosome in the spittlebug Philaenus spumarius

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In meiosis I, homologous chromosomes combine to form bivalents, which align on the metaphase plate. Homologous chromosomes then separate in anaphase I. Univalent sex chromosomes, on the other hand, are unable to segregate in the same way as homologous chromosomes of bivalents due to their lack of a homologous pairing partner in meiosis I. Here, we studied univalent segregation in a Hemipteran insect: the spittlebug Philaenus spumarius. We determined the chromosome number and sex determination mechanism in our population of P. spumarius and showed that, in male meiosis I, there is a univalent X chromosome. We discovered that the univalent X chromosome in primary spermatocytes forms an amphitelic attachment to the spindle and aligns on the metaphase plate with the autosomes. Interestingly, the X chromosome remains at spindle midzone long after the autosomes have separated. In late anaphase I, the X chromosome initiates movement towards one spindle pole. This movement appears to be correlated with a loss of microtubule connections between the kinetochore of one chromatid and its associated spindle pole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosom Res 1:15–26

    Article  CAS  Google Scholar 

  • Ault JG (1984) Unipolar orientation stability of the sex univalent in the grasshopper (Melanoplus sanguinipes). Chromosoma 89:201–205

    Article  Google Scholar 

  • Bauer H, Dietz R, Röbbelen C (1961) Die spermatocytenteilungen der tipuliden. III. das bewegungsverhalten der chromsomen in translokationheterozygoten von tipula oleracea. Chromosoma 12:116–189

    Article  CAS  PubMed  Google Scholar 

  • Begg DA, Ellis GW (1979) Micromanipulation studies of chromosome movement I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers. J Cell Biol 82:528–541

    Article  CAS  PubMed  Google Scholar 

  • Boring, A. M. (1907). A study of the spermatogenesis in twenty-two species of the Membracidae, Jassidae, Cercopidae, and Fulgoridae (Doctor of Philosophy).

  • Boring AM (1909) A small chromosome in Ascaris megalocephala. Arch f Zellf 4:120–131

    Google Scholar 

  • Boring AM (1913) The chromosomes of the Cercopidae. Biol Bull 24:133–146

    Article  Google Scholar 

  • Boring AM, Fogler RH (1915) Further notes on the chromosomes of the Cercopidae. Biol Bull 29:312–315

    Article  Google Scholar 

  • Boveri T (1909) Über geschlechtschromosomen bei nematoden. Arch f Zellf 4:132–141

    Google Scholar 

  • Brady M, Paliulis LV (2015) Chromosome interaction over a distance in meiosis. R Soc open sci 2:150029

    Article  PubMed  PubMed Central  Google Scholar 

  • Bressa MJ, Papeschi AG, Mola L, Larramendy ML (2001) Autosomal univalents as a common meiotic feature in Jadera haematoloma (Herrich-Schaeffer, 1847) and Jadera sanguinolenta (Fabricius, 1775) (Heteroptera: Rhopalidae: Serinethinae). Eur J Entomol 98:151–157

    Article  Google Scholar 

  • Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA (2014) Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol 24:2295–2300

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietz R (1954) Multiple geschlechtschromosomen bei dem ostracoden Notodromas monacha. Chromosoma 6:397–418

    Article  CAS  PubMed  Google Scholar 

  • Dietz R (1969) Bau und funktion des spindelapparats. Naturwissenschaften 56(5):237–248

    Article  CAS  PubMed  Google Scholar 

  • Doan RN, Paliulis LV (2009) Micromanipulation reveals an XO-XX sex determining system in the orb-weaving spider Neoscona arabesca (Walckenaer). Hereditas 146:180–182

    Article  PubMed  Google Scholar 

  • Edwards CL (1910) The sex-determining chromosomes in ascaris. Science 31:514–515

    Article  CAS  PubMed  Google Scholar 

  • Fabig G, Müller-Reichert T, Paliulis LV (2016) Back to the roots: segregation of univalent sex chromosomes in meiosis. Chromosoma 125:277–286

    Article  PubMed  Google Scholar 

  • Fuge H (1985) The three-dimensional architecture of chromosome fibres in the crane fly II. Amphitelic sex univalents in meiotic anaphase I. Chromosoma 91:322–328

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Ferraro-Gideon, J, Berns, M (2013) Distance segregation of sex chromosomes in crane-fly spermatocytes studied using laser microbeam irradiations. Protoplasma 250:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Golding AE, Paliulis LV (2011) Karyotype, sex determination, and meiotic chromosome behavior in two pholcid (Araneomorphae, Pholcidae) spiders: implications for karyotype evolution. PLoS One 6:e24748–e24748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton KGA (1982) Insects and arachnids of Canada: part 10. The spittlebugs of Canada (Homoptera: Cercopidae). Biosystematics Research Institute, Ottawa

    Google Scholar 

  • John B (1990) Meiosis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • John B, Claridge MF (1974) Chromosome variation in British populations of Oncopsis (Hemiptera: Cicadellidae). Chromosoma 46:77–89

    Article  CAS  PubMed  Google Scholar 

  • King JM, Nicklas RB (2000) Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J Cell Sci 113:3815–3823

    CAS  PubMed  Google Scholar 

  • Kuznetsova V, Maryańska-Nadachowska A, Nokkala S (2003) A new approach to the Auchenorrhyncha (Hemiptera, Insecta) cytogenetics: chromosomes of the meadow spittlebug Philaenus spumarius (L.) examined using various chromosome banding techniques. Folia Biol 51:33–40

    Google Scholar 

  • Montgomery TH (1910) Are particular chromosomes sex determinants? Biol Bull 19:1–17

    Article  Google Scholar 

  • Moore DP, Orr-Weaver TL (1998) Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37:263–299

    Article  CAS  PubMed  Google Scholar 

  • Nicklas RB (1961) Recurrent pole-to-pole movements of the sex chromosome during prometaphase I in Melanoplus differentialis spermatocytes. Chromosoma 12:97–115

    Article  CAS  PubMed  Google Scholar 

  • Nicklas RB (1963) A quantitative study of chromosomal elasticity and its influence on chromosome movement. Chromosoma 21:1–16

    Article  Google Scholar 

  • Nicklas RB, Brinkley BR, Pepper DA, Kubai DF, Rickards GK (1979) Electron microscopy of spermatocytes previously studied in life: methods and some observations on micromanipulated chromosomes. J Cell Sci 35:87–104

    CAS  PubMed  Google Scholar 

  • Nicklas RB, Staehly CA (1967) Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Nokkala S (1986) The mechanisms behind the regular segregation of autosomal univalents in Calocoris quadripunctatus (vil.) (Miridae, Hemiptera). Hereditas 105:199–204

    Article  Google Scholar 

  • Nokkala S, Kuznetsova V, Maryańska-Nadachowska A (2000) Achiasmate segregation of a B chromosome from the X chromosome in two species of psyllids (Psylloidea, Homoptera). Genetica 108:181–189

    Article  CAS  PubMed  Google Scholar 

  • Rebollo E, Arana P (1995) A comparative study of orientation at behavior of univalent in living grasshopper spermatocytes. Chromosoma 104:56–67

    Article  CAS  PubMed  Google Scholar 

  • Rebollo E, Martín S, Manzanero S, Arana P (1998) Chromosomal strategies for adaptation to univalency. Chromosom Res 6:515–531

    Article  CAS  Google Scholar 

  • Rebollo E, Arana P (1997) Univalent orientation in living meiocytes. Chromosomes Today 12:249–269

    Article  CAS  Google Scholar 

  • Rebollo E, Arana P (1998) Chromosomal factors affecting the transmission of univalents. Chromosom Res 6:67–69

    Article  CAS  Google Scholar 

  • Schrader F (1935) Notes on the mitotic behavior of long chromosomes. Cytologia 6:422–430

    Article  Google Scholar 

  • Shakes DC, Neva BJ, Huynh H, Chaudhuri J, Pires-da Silva A (2011) Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nature Comm 2:157

    Article  Google Scholar 

  • Shakes DC, Wu J, Sadler PL, LaPrade K, Moore LL, Noritake A, Chu DS (2009) Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS One 5:e1000611

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution, Third edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

We thank Art Forer for interesting discussions about our experiments and the implications of our results. We thank two anonymous reviewers for their constructive suggestions. KDF was funded by a Bucknell University Graduate Research Fellowship and a Robert P. Vidinghoff Memorial Summer Internship through the Bucknell University Biology Department. NAR was funded by the Russo Fund for Undergraduate Research in Biological Sciences through the Bucknell University Biology Department. MBL and LQ were funded by the National Science Foundation (grant number NSF DUE-1317446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leocadia V. Paliulis.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Douglas Chandler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felt, K.D., Lagerman, M.B., Ravida, N.A. et al. Segregation of the amphitelically attached univalent X chromosome in the spittlebug Philaenus spumarius . Protoplasma 254, 2263–2271 (2017). https://doi.org/10.1007/s00709-017-1117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1117-9

Keywords

Navigation