Skip to main content
Log in

Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L.

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Various arrays of microtubules are present throughout the plant cell cycle and are involved in distinct functions. Microtubule-associated proteins (MAPs) regulate microtubule dynamics by acting as stabilizers, destabilizers, and promoters of microtubule dynamics. The MAP65 family is a specific group of cross-linkers required for structural maintenance of microtubules. In plants, different isoforms of MAP65 are differentially expressed according to their developmental program. In this work, we analyzed the differential distribution of proteins immunologically related to MAP65-1 during bud development in grapevine (Vitis vinifera L.). First, we annotated the MAP65 genes present in the Vitis genome in order to compare the number and sequence of genes to other species. Subsequently, we focused on a specific isoform (MAP65-1) by characterizing its accumulation and distribution. Proteins were extracted from different organs of Vitis (buds, leaves, flowers, and tendrils), were separated by two-dimensional electrophoresis (2-DE), and were probed by immunoblot with a specific antiserum. We found seven spots immunologically related to MAP65-1, grouped in two distinct clusters, which accumulate differentially according to the developmental stage. In addition, we analyzed the localization of MAP65-1 during three different stages of bud development. Implication of data on the use of different isotypes of MAP65-1 during Vitis development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambrose JC, Cyr R (2008) Mitotic spindle organization by the preprophase band. Mol Plant 1:950–960

    Article  CAS  PubMed  Google Scholar 

  • Arranz S, Chiva-Blanch G, Valderas-Martìnez P, Medina-Remon A, Lamuela-Raventos RM, Estruch R (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4:759–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashline L, Lei L, Li S, Gu Y (2014) Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant 7:586–600

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Faleri C, Del Casino C, Hueros G, Thompson RD, Cresti M (2002) Subcellular localisation of BETL-1, -2 and -4 in Zea mays L. endosperm. Sex Plant Reprod 15:85–98

    Article  CAS  Google Scholar 

  • Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida EJ, Marfaing N, Gounon P, Abad P, Favery B (2008) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20:423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan J, Jensen CG, Jensen LCW, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci U S A 96:14931–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan J, Rutten T, Lloyd C (1996) Isolation of microtubule-associated proteins from carrot cytoskeleton: a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J 10:251–259

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Smertenko AP, Igarashi H, Dixon DP, Hussey PJ (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. J Cell Sci 118:3195–3201

    Article  CAS  PubMed  Google Scholar 

  • Chang-Jie J, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105:891–901

    PubMed  Google Scholar 

  • Crowell EF, Gonneau M, Vernhettes S, Hofte H (2010) Regulation of anisotropic cell expansion in higher plants. CR Biol 333:320–324

    Article  CAS  Google Scholar 

  • Gaillard J, Neumann E, Van Damme D, Stoppin-Mellet V, Ebel C, Barbier E, Geelen D, Vantard M (2008) Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol Biol Cell 19:4534–4544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B (2009) Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot 103:387–402

    Article  CAS  PubMed  Google Scholar 

  • Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120:79–98

    Article  CAS  PubMed  Google Scholar 

  • Hamada T (2014a) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

    Article  CAS  PubMed  Google Scholar 

  • Hamada T (2014b) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

    Article  CAS  PubMed  Google Scholar 

  • Ho CMK, Hotta T, Guo F, Roberson RW, Lee YRJ, Liu B (2011) Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23:2909–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofte H (2010) Plant cell biology: how to pattern a wall. Curr Biol 20:R450–R452

    Article  PubMed  Google Scholar 

  • Howe KL, Chothia T, Durbin R (2002) GAZE: a generic framework for the integration of gene-prediction data by dynamic programming. Genome Res 12:1418–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del FC, Alaux M, Di GG, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le CI, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zeng X, Liu ZQ, Meng QT, Yuan M, Mao TL (2009) Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer. Plant Mol Biol 69:313–324

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Persson S, Zhang Y (2015) The connection of cytoskeletal network with plasma membrane and the cell wall. Journal of Integrative Plant Biol 57:330–340

    Article  CAS  Google Scholar 

  • Lucas JR, Shaw SL (2012) MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J 71:454–463

    CAS  PubMed  Google Scholar 

  • Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL (2011) Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23:1889–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao G, Buschmann H, Doonan JH, Lloyd CW (2006) The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J Cell Sci 119:753–758

    Article  CAS  PubMed  Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138:654–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panteris E, Karali DS (2008) The role of new microtubule assembly and MAP65 in microtubule bundle formation in pavement cells of Asplenium nidus. J Biol Res 10:139–147

    CAS  Google Scholar 

  • Panteris E, Komis G, Adamakis ID, Samaj J, Bosabalidis AM (2010) MAP65 in tubulin/colchicine paracrystals of Vigna sinensis root cells: possible role in the assembly and stabilization of atypical tubulin polymers. Cytoskeleton 67:152–160

    CAS  PubMed  Google Scholar 

  • Parrotta L, Cai G, Cresti M (2010) Changes in the accumulation of α- and β-tubulin during bud development in Vitis vinifera L. Planta 231:277–298

    Article  CAS  PubMed  Google Scholar 

  • Parrotta L, Cresti M, Cai G (2014) Accumulation and post-translational modifications of plant tubulins. Plant Biol 16:521–527

    Article  CAS  PubMed  Google Scholar 

  • Piperno G, LeDizet M, Xiao-Jia C (1987) Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol 104:289–302

    Article  CAS  PubMed  Google Scholar 

  • Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I, Martiel JL, Vantard M (2013) MAP65/Ase1 promote microtubule flexibility. Mol Biol Cell 24:1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radchuk VV, Sreenivasulu N, Blume Y, Weschke W (2007) Distinct tubulin genes are differentially expressed during barley grain development. Physiol Plant 131:571–580

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum J (2000) Cytoskeleton: functions for tubulin modifications at last. Curr Biol 10:R801–R803

    Article  CAS  PubMed  Google Scholar 

  • Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y (2011a) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6:743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasabe M, Boudolf V, De Veylder L, Inzé D, Genschik P, Machida Y (2011b) Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proc Natl Acad Sci U S A 108:17844–17849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedbrook JC (2004) MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7:632–640

    Article  CAS  PubMed  Google Scholar 

  • Smertenko A (2014) Determination of phosphorylation sites in microtubule associated protein MAP65-1. Methods Mol Biol 1171:161–170

    Article  PubMed  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    Article  CAS  PubMed  Google Scholar 

  • Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20:3346–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237

    Article  CAS  PubMed  Google Scholar 

  • Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struk S, Dhonukshe P (2013) MAPs: cellular navigators for microtubule array orientations in Arabidopsis. Plant Cell Rep 33:1–21

    Article  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004a) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D (2004b) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  CAS  PubMed  Google Scholar 

  • Wehenkel A, Janke C (2014) Towards elucidating the tubulin code. Nat Cell Biol 16:303–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Prof. Michele Morgante (IGA, Applied Genomic Institute, Udine Italy) for kind assistance in genome annotations and for suggestions and criticisms. We also thank the gardeners of the Botanical Garden of Siena University for growing Vitis plants. This work was funded in the framework of the VIGNA Project (http://www.vitisgenome.it/en/index.php5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Parrotta.

Additional information

Handling Editor: Anne-Catherine Schmit

Electronic supplementary material

ESM 1

(PDF 101 kb)

ESM 2

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parrotta, L., Faleri, C., Cresti, M. et al. Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L.. Protoplasma 254, 1591–1605 (2017). https://doi.org/10.1007/s00709-016-1055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1055-y

Keywords

Navigation