Skip to main content
Log in

Microtubule-associated proteins in higher plants

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the γ-tubulin complex (γTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components—actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghany SE, Reddy AS (2000) A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots. DNA Cell Biol 19(9):567–578

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Hoogenraad CC (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17(1):47–54

    Article  PubMed  CAS  Google Scholar 

  • Al-Bassam J, van Breugel M, Harrison SC, Hyman A (2006) Stu2p binds tubulin and undergoes an open-to-closed conformational change. J Cell Biol 172(7):1009–1022

    Article  PubMed  CAS  Google Scholar 

  • Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16(4):1584–1592

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808

    Article  PubMed  CAS  Google Scholar 

  • Ashby J, Boutant E, Seemanpillai M, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80(17):8329–8344

    Article  PubMed  CAS  Google Scholar 

  • Askham JM, Vaughan KT, Goodson HV, Morrison EE (2002) Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell 13(10):3627–3624

    Article  PubMed  CAS  Google Scholar 

  • Baas PW, Qiang L (2005) Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol 15(4):183–187

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN, Heinlein M (2000) Role of P30 in replication and spread of TMV. Traffic 1(7):540–544

    Article  PubMed  CAS  Google Scholar 

  • Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84(4):623–631

    Article  PubMed  CAS  Google Scholar 

  • Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE (1998) The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci USA 95(18):10596–10601

    Article  PubMed  CAS  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Hofte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25(2):137–148

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove SR, Hable WE, Kropf DL (2004) +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol 136(4):3855–3863

    Article  PubMed  CAS  Google Scholar 

  • Bouquin T, Mattsson O, Naested H, Foster R, Mundy J (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116(Pt 5):791–801

    Article  PubMed  CAS  Google Scholar 

  • Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon MO, Heinlein M (2000) Cellular targets of functional and dysfunctional mutants of tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 74(23):11339–11346

    Article  PubMed  CAS  Google Scholar 

  • Brière C, Bordel AC, Barthou H, Jauneau A, Steinmetz A, Alibert G, Petitprez M (2003) Is the LIM-domain protein HaWLIM1 associated with cortical microtubules in sunflower protoplasts? Plant Cell Physiol 44(10):1055–1063

    Article  PubMed  Google Scholar 

  • Brittle AL, Ohkura H (2005) Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J 24(7):1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Burk DH, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14(9):2145–2160

    Article  PubMed  CAS  Google Scholar 

  • Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13(4):807–827

    Article  PubMed  CAS  Google Scholar 

  • Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schaffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14(16):1515–1521

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Ovidi E, Romagnoli S, Vantard M, Cresti M, Tiezzi A (2005) Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco. Plant Cell Physiol 46(4):563–578

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Romagnoli S, Moscatelli A, Ovidi E, Gambellini G, Tiezzi A, Cresti M (2000) Identification and characterization of a novel microtubule-based motor associated with membranous organelles in tobacco pollen tubes. Plant Cell 12(9):1719–1736

    Article  PubMed  CAS  Google Scholar 

  • Cassimeris L, Gard D, Tran PT, Erickson HP (2001) XMAP215 is a long thin molecule that does not increase microtubule stiffness. J Cell Sci 114(Pt 16):3025–3033

    PubMed  CAS  Google Scholar 

  • Cassimeris L (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14(1):18–24

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17(6):1737–1748

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5(11):967–971

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Jensen CC, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96: 14931–14936

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Smertenko AP, Igarashi H, Dixon DP, Hussey PJ (2005) Dynamic interaction of NtMAP65-1a with microtubules in vivo. J Cell Sci 118(Pt 14):3195–3201

    Article  PubMed  CAS  Google Scholar 

  • Charrasse S, Schroeder M, Gauthier-Rouviere C, Ango F, Cassimeris L, Gard DL, Larroque C (1998) The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J Cell Sci 111(Pt 10):1371–1383

    PubMed  CAS  Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129(10):2401–2409

    PubMed  CAS  Google Scholar 

  • Chen XP, Yin H, Huffaker TC (1998) The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly. J Cell Biol 141(5):1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Chuong SD, Good AG, Taylor GJ, Freeman MC, Moorhead GB, Muench DG (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3(10):970–983

    Article  PubMed  CAS  Google Scholar 

  • Chuong SD, Mullen RT, Muench DG (2002) Identification of a rice RNA- and microtubule-binding protein as the multifunctional protein, a peroxisomal enzyme involved in the beta-oxidation of fatty acids. J Biol Chem 277(4):2419–2429

    Article  PubMed  CAS  Google Scholar 

  • Chuong SD, Park NI, Freeman MC, Mullen RT, Muench DG (2005) The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells. BMC Cell Biol 6:40

    Article  PubMed  CAS  Google Scholar 

  • Cleary AL, Smith LG (1998) The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10(11):1875–1888

    Article  PubMed  CAS  Google Scholar 

  • Collings DA, Asada T, Allen NS, Shibaoka H (1998) Plasma membrane-associated actin in bright yellow 2 tobacco cells. Evidence for interaction with microtubules. Plant Physiol 118(3):917–928

    Article  PubMed  CAS  Google Scholar 

  • Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138(5):1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Cullen CF, Deak P, Glover DM, Ohkura H (1999) mini spindles: a gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol 146(5):1005–1018

    Article  PubMed  CAS  Google Scholar 

  • Cullen CF, Ohkura H (2001) Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol 3(7):637–642

    Article  PubMed  CAS  Google Scholar 

  • Dagenbach EM, Endow SA (2004) A new kinesin tree. J Cell Sci 117(Pt 1):3–7

    Article  PubMed  CAS  Google Scholar 

  • Davies E, Comer EC, Lionberger JM, Stankovic B, Abe S (1993) Cytoskeleton-bound polysomes in plants. III. Polysome-cytoskeleton-membrane interactions in corn endosperm. Cell Biol Int 17:331–340

    Article  CAS  Google Scholar 

  • Davies E, Fillingham BD, Oto Y, Abe S (1991) Evidence for the existence of cytoskeleton-bound polysomes in plants. Cell Biol Int Rep 15:975–981

    Article  Google Scholar 

  • Day IS, Miller C, Golovkin M, Reddy AS (2000) Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J Biol Chem 275(18):13737–13745

    Article  PubMed  CAS  Google Scholar 

  • Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  PubMed  CAS  Google Scholar 

  • DeZwaan TM, Ellingson E, Pellman D, Roof DM (1997) Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol 138(5):1023–1040

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15(11):2666–2679

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17(3):1298–1305

    Article  PubMed  CAS  Google Scholar 

  • Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3(10):1141–1154

    PubMed  CAS  Google Scholar 

  • Dryková D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes. Plant Cell 15(2):465–480

    Article  PubMed  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha. Plant Cell 6(6):893–905

    Article  PubMed  CAS  Google Scholar 

  • Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143(3):777–794

    Article  PubMed  CAS  Google Scholar 

  • Eleftheriou EP, Baskin TI, Hepler PK (2005) Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant. Plant Cell Physiol 46(4):671–675

    Article  PubMed  CAS  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115(Pt 11):2423–2431

    PubMed  CAS  Google Scholar 

  • Falconer MM, Seagull RW (1985) Immunofluorescent and calcofluor white staining of developing tracheary elements in Zinnia elegans L. suspension cultures. Protoplasma 125:190–198

    Article  Google Scholar 

  • Faulkner NE, Dujardin DL, Tai CY, Vaughan KT, O’Connell CB, Wang Y, Vallee RB (2000) A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat Cell Biol 2(11):784–791

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev Growth Differ 31:9–16

    Article  Google Scholar 

  • Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana. Development 127(20):4443–4453

    PubMed  CAS  Google Scholar 

  • Garcia MA, Koonrugsa N, Toda T (2002a) Spindle-kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. EMBO J 21(22):6015–6024

    Article  CAS  Google Scholar 

  • Garcia MA, Koonrugsa N, Toda T (2002b) Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12(8):610–621

    Article  CAS  Google Scholar 

  • Garcia MA, Vardy L, Koonrugsa N, Toda T (2001) Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20(13):3389–3401

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Becker BE, Josh Romney S (2004) MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol 239:179–272

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Kirschner MW (1987) A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105(5):2203–2215

    Article  PubMed  CAS  Google Scholar 

  • Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44(7):687–696

    Article  PubMed  CAS  Google Scholar 

  • Gardiner J, Marc J (2003) Putative microtubule-associated proteins from the Arabidopsis genome. Protoplasma 222(1–2):61–74

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13(9):2143–2145

    Article  PubMed  CAS  Google Scholar 

  • Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW (2000) The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci USA 97(26):14352–14357

    Article  PubMed  CAS  Google Scholar 

  • Giet R, McLean D, Descamps S, Lee MJ, Raff JW, Prigent C, Glover DM (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156(3):437–451

    Article  PubMed  CAS  Google Scholar 

  • Gräf R, Daunderer C, Schliwa M (2000) Dictyostelium DdCP224 is a microtubule-associated protein and a permanent centrosomal resident involved in centrosome duplication. J Cell Sci 113(Pt 10):1747–1758

    PubMed  Google Scholar 

  • Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, Barr FA (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172(3):363–372

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Spetz C, Saarma M, Valkonen JP (2003) Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro. Mol Plant Microbe Interact 16(5):405–410

    PubMed  CAS  Google Scholar 

  • Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45(9):1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR, Gunning BE (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77(1):14–34

    Article  PubMed  CAS  Google Scholar 

  • Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93(2):277–287

    Article  PubMed  CAS  Google Scholar 

  • Hartman JJ, Vale RD (1999) Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science 286(5440):782–785

    Article  PubMed  CAS  Google Scholar 

  • Hasezawa S, Nagata T (1991) Dynamic organization of plant microtubules at the three distinct transition points during the cell cycle progression of synchronized tobacco BY-2 cells. Bot Acta 104:206–211

    Google Scholar 

  • Hepler PK, Jackson WT (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J Cell Biol 38: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Hirase A, Hamada T, Itoh TJ, Shimmen T, Sonobe S (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol 47(7):1004–1009

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci 26(27):7139–7142

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50(6):915–924

    Article  PubMed  CAS  Google Scholar 

  • Ichihara K, Kitazawa H, Iguchi Y, Hotani H, Itoh TJ (2001) Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2). J Mol Biol 312(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41(8):920–931

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Thitamadee S, Hashimoto T (2007) Twisted growth and organization of cortical microtubules. J Plant Res 120 (in press)

  • Jansen RP (1999) RNA-cytoskeletal associations. FASEB J 13(3):455–466

    PubMed  CAS  Google Scholar 

  • Jiang C, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105(Pt 4):891–901

    CAS  Google Scholar 

  • Jiang CJ, Sonobe S, Shibaoka H (1992) Assembly of microtubules in a cytoplasmic extract of tobacco BY-2 miniprotoplasts in the absence of microtubule-stabilizing agents. Plant Cell Physiol 33:497–501

    CAS  Google Scholar 

  • Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM, Hunter T, Fukunaga R (1998) PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell 2(6):877–885

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T, Shibaoka H (1988a) Cytoskeletal ultrastructure of phragmoplast-nuclei complex isolated from cultured tobacco cells. Protoplasma (Suppl) 2:95–103

    Google Scholar 

  • Kakimoto T, Shibaoka H. (1988b) Cytoskeletal ultrastructure of phragmoplast–nuclei complexes isolated from cultured tobacco cells. Protoplasma (Suppl) 2:95–103

    Google Scholar 

  • Kanai Y, Dohmae N, Hirokawa N. (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43(4):513–525

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W (1996) Influence of salicylic acid on the induction of competence for H2O2 elicitation (comparison of ergosterol with other elicitors). Plant Physiol 111(3):755–763

    PubMed  CAS  Google Scholar 

  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140(1):102–114

    Article  PubMed  CAS  Google Scholar 

  • Kerssemakers JW, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442(7103):709–712

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A, Lee M, Raff JW, Hyman AA (2005) Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170(7):1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Kosco KA, Pearson CG, Maddox PS, Wang PJ, Adams IR, Salmon ED, Bloom K, Huffaker TC (2001) Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol Biol Cell. 12(9):2870–2880

    PubMed  CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132(4):1870–1883

    Article  PubMed  CAS  Google Scholar 

  • Kumagai F, Hasezawa S, Takahashi Y, Nagata T (1995) The involvement of protein synthesis elongation factor 1alpha in the organization of microtubules on the perinuclear region during the cell cycle transition from M phase to G1 phase in tobacco BY-2 cells. Bot Acta 108:467–473

    CAS  Google Scholar 

  • Kumagai F, Nagata T, Yahara N, Moriyama Y, Horio T, Naoi K, Hashimoto T, Murata T, Hasezawa S (2003) Gamma-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol 82(1):43–51

    Article  PubMed  CAS  Google Scholar 

  • Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42(7):723–732

    Article  PubMed  CAS  Google Scholar 

  • Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23(16):3237–3248

    Article  PubMed  CAS  Google Scholar 

  • Lancelle SA, Callaham DA, Hepler PK (1986a) A method for rapid freeze fixation of plant-cells. Plotoplasma 131(2):153–165

    Article  Google Scholar 

  • Lancelle SA, Callaham DA, Hepler PK (1986b) A method for rapid freeze fixation of plant cells. Protoplasma 131:153–165

    Article  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    Article  Google Scholar 

  • Lee MJ, Gergely F, Jeffers K, Peak-Chew SY, Raff JW (2001) Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol 3(7):643–649

    Article  PubMed  CAS  Google Scholar 

  • Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136(4):3877–3883

    Article  PubMed  CAS  Google Scholar 

  • Ligon LA, Shelly SS, Tokito M, Holzbaur EL (2003) The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol Biol Cell 14(4):1405–1417

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8(1):119–132

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104(Pt 4):1217–1228

    PubMed  CAS  Google Scholar 

  • Loiodice I, Staub J, Setty TG, Nguyen NP, Paoletti A, Tran PT (2005) Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol Biol Cell 16(4):1756–1768

    Article  PubMed  CAS  Google Scholar 

  • Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117(Pt 7):1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16(2):811–823

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7(1):72–81

    Article  PubMed  CAS  Google Scholar 

  • Mao G, Buschmann H, Doonan JH, Lloyd CW (2006) The role of MAP65–1 in microtubule bundling during Zinnia tracheary element formation. J Cell Sci 119(Pt 4):753–758

    Article  PubMed  CAS  Google Scholar 

  • Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005a) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43(4):469–478

    Article  CAS  Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005b) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138(2):654–662

    Article  CAS  Google Scholar 

  • Marc J, Sharkey DE, Durso NA, Zhang M, Cyr RJ (1996) Isolation of a 90-kD microtubule-associated protein from tobacco membranes. Plant Cell 8(11):2127–2138

    Article  PubMed  CAS  Google Scholar 

  • Marcus AI, Ambrose JC, Blickley L, Hancock WO, Cyr RJ (2002) Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement. Cell Motil Cytoskeleton 52(3):144–150

    Article  PubMed  CAS  Google Scholar 

  • Mas P, Beachy RN (2000) Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc Natl Acad Sci USA 97(22):12345–12349

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol 13(22):1991–1997

    Article  PubMed  CAS  Google Scholar 

  • Matthews LR, Carter P, Thierry-Mieg D, Kemphues K (1998) ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J Cell Biol 141(5):1159–1168

    Article  PubMed  CAS  Google Scholar 

  • McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75(3):419–429

    Article  PubMed  CAS  Google Scholar 

  • McNally KP, Bazirgan OA, McNally FJ (2000) Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. J Cell Sci 113(Pt 9):1623–1633

    PubMed  CAS  Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476

    Article  PubMed  CAS  Google Scholar 

  • Miles GP, Samuel MA, Jones AM, Ellis BE (2004) Mastoparan rapidly activates plant MAP kinase signaling independent of heterotrimeric G proteins. Plant Physiol 134(4):1332–1336

    Article  PubMed  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10(14):865–868

    Article  PubMed  CAS  Google Scholar 

  • Mineyuki Y (2007) Plant microtubule study: past and present. J Plant Res 120 (in press)

  • Mitsui H, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H (1993) Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol Gen Genet 238(3):362–368

    Article  PubMed  CAS  Google Scholar 

  • Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157(7):1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Moore RC, Cyr RJ (2000) Association between elongation factor-1alpha and microtubules in vivo is domain dependent and conditional. Cell Motil Cytoskeleton 45(4):279–292

    Article  PubMed  CAS  Google Scholar 

  • Moore RC, Durso NA, Cyr RJ (1998) Elongation factor-1alpha stabilizes microtubules in a calcium/calmodulin-dependent manner. Cell Motil Cytoskeleton 41(2):168–180

    Article  PubMed  CAS  Google Scholar 

  • Morrison EE, Wardleworth BN, Askham JM, Markham AF, Meredith DM (1998) EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 17(26):3471–3477

    Article  PubMed  CAS  Google Scholar 

  • Muench DG, Chuong SD, Franceschi VR, Okita TW (2000) Developing prolamine protein bodies are associated with the cortical cytoskeleton in rice endosperm cells. Planta 211(2):227–238

    Article  PubMed  CAS  Google Scholar 

  • Muench DG, Wu Y, Coughlan SJ, Okita TW (1998) Evidence for a cytoskeleton-associated binding site involved in prolamine mRNA localization to the protein bodies in rice endosperm tissue. Plant Physiol 116(2):559–569

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16(9):888–894

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65–3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14(5):412–417

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plants. J Plant Res 120 (in press)

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7(10):961–968

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima K, Kurooka H, Takeuchi M, Kinoshita K, Nakaseko Y, Yanagida M (1995) p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev 9(13):1572–1585

    PubMed  CAS  Google Scholar 

  • Nabeshima K, Nakagawa T, Straight AF, Murray A, Chikashige Y, Yamashita YM, Hiraoka Y, Yanagida M (1998) Dynamics of centromeres during metaphase–anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase polar spindle. Mol Biol Cell 9(11):3211–3225

    PubMed  CAS  Google Scholar 

  • Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16(5):1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47(4):513–522

    Article  PubMed  CAS  Google Scholar 

  • Nakaseko Y, Nabeshima K, Kinoshita K, Yanagida M (1996) Dissection of fission yeast microtubule associating protein p93Dis1: regions implicated in regulated localization and microtubule interaction. Genes Cells 1(7):633–644

    Article  PubMed  CAS  Google Scholar 

  • Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15(3):352–363

    Article  PubMed  CAS  Google Scholar 

  • Nogales E (2001) Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 30:397–420

    Article  PubMed  CAS  Google Scholar 

  • Oakley CE, Oakley BR (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338(6217):662–664

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137(3):1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Okita TW, Choi SB (2002) mRNA localization in plants: targeting to the cell’s cortical region and beyond. Curr Opin Plant Biol 5(6):553–559

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125(19):3789–3799

    PubMed  CAS  Google Scholar 

  • Pellman D, Bagget M, Tu YH, Fink GR, Tu H (1995) Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J Cell Biol 130(6):1373–1385

    Article  PubMed  CAS  Google Scholar 

  • Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS (1997) Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol 136(5):1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Permana S, Hisanaga S, Nagatomo Y, Iida J, Hotani H, Itoh TJ (2005) Truncation of the projection domain of MAP4 (microtubule-associated protein 4) leads to attenuation of microtubule dynamic instability. Cell Struct Funct 29(5–6):147–157

    Article  PubMed  CAS  Google Scholar 

  • Pierre P, Pepperkok R, Kreis TE (1994) Molecular characterization of two functional domains of CLIP-170 in vivo. J Cell Sci 107(Pt 7):1909–1920

    PubMed  CAS  Google Scholar 

  • Pierre P, Scheel J, Rickard JE, Kreis TE (1992) CLIP-170 links endocytic vesicles to microtubules. Cell 70: 887–900

    Article  PubMed  CAS  Google Scholar 

  • Popov AV, Severin F, Karsenti E (2002) XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr Biol 12(15):1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Preisig-Müller R, Guhnemann-Schafer K, Kindl H (1994) Domains of the tetrafunctional protein acting in glyoxysomal fatty acid beta-oxidation. Demonstration of epimerase and isomerase activities on a peptide lacking hydratase activity. J Biol Chem 269(32):20475–20481

    PubMed  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132(1):154–160

    Article  PubMed  CAS  Google Scholar 

  • Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136: 3945–3955

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2(1):2

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Narasimhulu SB, Safadi F, Golovkin M (1996a) A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant J 10(1):9–21

    Article  CAS  Google Scholar 

  • Reddy AS, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996b) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271(12):7052–7060

    Article  CAS  Google Scholar 

  • Reddy VS, Safadi F, Zielinski RE, Reddy AS (1999) Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. J Biol Chem 274(44):31727–31733

    Article  PubMed  CAS  Google Scholar 

  • Rehberg M, Gräf R (2002) Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell 13(7):2301–2310

    Article  PubMed  CAS  Google Scholar 

  • Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609

    Article  PubMed  CAS  Google Scholar 

  • Rogers SL, Rogers GC, Sharp DJ, Vale RD (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158(5):873–884

    Article  PubMed  CAS  Google Scholar 

  • Sami-Subbu R, Choi SB, Wu Y, Wang C, Okita TW (2001) Identification of a cytoskeleton-associated 120 kDa RNA-binding protein in developing rice seeds. Plant Mol Biol 46(1):79–88

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65–1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20(8):1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Vardy L, Angel Garcia M, Koonrugsa N, Toda T (2004) Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol Biol Cell 15(4):1609–1622

    Article  PubMed  CAS  Google Scholar 

  • Schuyler SC, Liu JY, Pellman D (2003) The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160(4):517–528

    Article  PubMed  CAS  Google Scholar 

  • Schwab B, Mathur J, Saedler R, Schwarz H, Frey B, Scheidegger C, Hulskamp M (2003) Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol Genet Genomics 269(3):350–360

    Article  PubMed  CAS  Google Scholar 

  • Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR (2004) The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell. 16(6):1506–1520

    Article  PubMed  CAS  Google Scholar 

  • Severin F, Habermann B, Huffaker T, Hyman T (2001) Stu2 promotes mitotic spindle elongation in anaphase. J Cell Biol 153(2):435–442

    Article  PubMed  CAS  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300(5626):1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45:527–544

    CAS  Google Scholar 

  • Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E (1994) Microtubule severing by elongation factor 1 alpha. Science 266(5183):282–285

    Article  PubMed  CAS  Google Scholar 

  • Shirasu-Hiza M, Coughlin P, Mitchison T (2003) Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification. J Cell Biol 161(2):349–358

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Narita NN, Hayashi K, Asada J, Hamada T, Sonobe S, Nakajima K, Hashimoto T (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136(4):3933–3944

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65–1 interaction with microtubules through the cell cycle. J Cell Sci 119(Pt 15):3227–3237

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16(8):2035–2047

    Article  PubMed  CAS  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2(10):750–753

    Article  PubMed  CAS  Google Scholar 

  • Smirnova EA, Reddy AS, Bowser J, Bajer AS (1998) Minus end-directed kinesin-like motor protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskeleton 41(3):271–280

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Gerttula SM, Han S, Levy J (2001) Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152(1):231–236

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122(2):481–489

    PubMed  CAS  Google Scholar 

  • Sonobe S, Yamamoto S, Motomura M, Shimmen T (2001) Isolation of cortical MTs from tobacco BY-2 cells. Plant Cell Physiol 42(2):162–169

    Article  PubMed  CAS  Google Scholar 

  • Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17(8):1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Spittle C, Charrasse S, Larroque C, Cassimeris L (2000) The interaction of TOGp with microtubules and tubulin. J Biol Chem 275(27):20748–20753

    Article  PubMed  CAS  Google Scholar 

  • St Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6(5):363–375

    Article  PubMed  CAS  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156(6):1051

    Article  PubMed  CAS  Google Scholar 

  • Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4(6):1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Stoppin-Mellet V, Gaillard J, Vantard M (2002) Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J 365(Pt 2):337–342

    PubMed  CAS  Google Scholar 

  • Suprenant KA, Tempero LB, Hammer LB (1989) Association of ribosomes with in vitro assembled microtubules. Cell Motil Cytoskeleton 14:401–415

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Isobe M, Muto S (1998) Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1401(3):339–346

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9(12):1199–1211

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Mukae N, Dewar H, van Breugel M, James EK, Prescott AR, Antony C Tanaka TU (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434(7036):987–994

    Article  PubMed  CAS  Google Scholar 

  • Tirnauer JS, Grego S, Salmon ED, Mitchison TJ (2002) EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol Biol Cell 13(10):3614–3426

    Article  PubMed  CAS  Google Scholar 

  • Tirnauer JS, O’Toole E, Berrueta L, Bierer BE, Pellman D (1999) Yeast Bim1p promotes the G1-specific dynamics of microtubules. J Cell Biol 145(5):993–1007

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Microtubules regulates the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199:83–92

    Article  CAS  Google Scholar 

  • Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, KarsentiE, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2(1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(Pt 14):2355–2367

    PubMed  CAS  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4(9):711–714

    Article  PubMed  CAS  Google Scholar 

  • van Breugel M, Drechsel D, Hyman A (2003) Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J Cell Biol 161(2):359–369

    Article  PubMed  CAS  Google Scholar 

  • Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D (2004a) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40(3):386–398

    Article  CAS  Google Scholar 

  • Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004b) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136(4):3956–3967

    Article  CAS  Google Scholar 

  • Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11(4):167–175

    Article  PubMed  CAS  Google Scholar 

  • Vasquez RJ, Gard DL, Cassimeris L (1994) XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J Cell Biol 127(4):985–993

    Article  PubMed  CAS  Google Scholar 

  • Vaughan KT (2004) Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol 14(9):491–496

    Article  PubMed  CAS  Google Scholar 

  • Vaughan KT (2005) TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 171(2):197–200

    Article  PubMed  CAS  Google Scholar 

  • Verbrugghe KJ, White JG (2004) SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr Biol 14(19):1755–1760

    Article  PubMed  CAS  Google Scholar 

  • Verni F, Somma MP, Gunsalus KC, Bonaccorsi S, Belloni G, Goldberg ML, Gatti M (2004) Feo, the Drosophila homolog of PRC1, is required for central-spindle formation and cytokinesis. Curr Biol 14(17):1569–1575

    Article  PubMed  CAS  Google Scholar 

  • Vos JW, Safadi F, Reddy AS, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12(6):979–990

    Article  PubMed  CAS  Google Scholar 

  • Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84(1):37–47

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Takezawa D, Narasimhulu SB, Reddy ASN, Poovaiah BW (1996) A novel kinesin-like protein with a calmodulin-binding domain. Plant Mol Biol 31:87–100

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5(5):408–414

    Article  PubMed  CAS  Google Scholar 

  • Wang PJ, Huffaker TC (1997) Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J Cell Biol 139(5):1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Wordeman L (2005) Microtubule-depolymerizing kinesins. Curr Opin Cell Biol 17(1):82–88

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7(6):651–660

    Article  PubMed  CAS  Google Scholar 

  • Waterman-Storer CM, Gregory J, Parsons SF, Salmon ED (1995) Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts. J Cell Biol 130(5):1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3-a katanin-p60 protein. Development 129(1):123–131

    PubMed  CAS  Google Scholar 

  • West RR, Malmstrom T, McIntosh JR (2002) Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. J Cell Sci 115(Pt 5):931–940

    PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411(6837):610–613

    Article  PubMed  CAS  Google Scholar 

  • Wicker-Planquart C, Stoppin-Mellet V, Blanchoin L, Vantard M (2004) Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules. Plant J 39(1):126–134

    Article  PubMed  CAS  Google Scholar 

  • Wiese C, Zheng Y (2006) Microtubule nucleation: γ-tubulin and beyond. J Cell Sci 119(Pt 20):4143–4153

    Article  PubMed  CAS  Google Scholar 

  • Xia G, Ramachandran S, Hong Y, Chan YS, Simanis V, Chua NH (1996) Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe. Plant J 10(4):761–769

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Sato M, Fujita A, Yamamoto M, Toda T (2005) The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol Biol Cell 16(3):1378–1395

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara H, Muraoka M, Shogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43(6):595–603

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Shan J, Krishnamoorthi R, Wang X (2002) Activation of plant phospholipase Dbeta by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action. Biochemistry 41(14):4546–4553

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Schwartz C, Wee L, Oliferenko S (2006) The fission yeast transforming acidic coiled coil-related protein Mia1p/Alp7p is required for formation and maintenance of persistent microtubule-organizing centers at the nuclear envelope. Mol Biol Cell 17(5):2212–2222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I sincerely thank Professor Teruo Shimmen and Professor Seiji Sonobe (University of Hyogo) for critical reading of the manuscript. This work was partially supported by a research fellowship of the Japan Society for the Promotion of Science for young scientists and Grant in-Aid to T.H. for Scientific Research for Plant Graduate Student from Nara Institute of Science and Technology, Supported by The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Hamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, T. Microtubule-associated proteins in higher plants. J Plant Res 120, 79–98 (2007). https://doi.org/10.1007/s10265-006-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0057-9

Keywords

Navigation