Skip to main content
Log in

Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In vitro antioxidant virtue and life-prolonging effect of phycoerythrin (PE; a pigment protein isolated from Phormidium sp. A09DM) have been revealed in our previous reports (Sonani et al. in Age 36:9717, 2014a; Sonani et al. in Process Biochem 49:1757–1766, 2014b). It has been hypothesized that the PE expands life span of Caenorhabditis elegans (bears large resemblance with human aging pathways) due to its antioxidant virtue. This hypothesis is tested in present study by checking the effect of PE on intracellular reactive oxygen species (ROS) generation and associated physiological deformities using mouse and human skin fibroblasts, C. elegans, and Drosophila melanogaster Oregon R + and by divulging PE’s structural attributes responsible for its antioxidant asset. PE treatment displayed noteworthy decrease of 67, 48, and 77 % in ROS level in mouse fibroblast (3T3-L1), human fibroblast, and C. elegans N2, respectively, arisen under chemical-induced oxidative stress. PE treatment delayed the development of paraquat-induced Alzheimer phenotype by 14.5 % in C. elegans CL4176. Furthermore, PE improved the locomotion of D. melanogaster Oregon R + under oxidative stress with simultaneous up-regulation in super-oxide dismutase and catalase activities. The existence of 52 Glu + Asp + His + Thr residues (having metal ion sequestration capacity), 5 phycoerythrobilin chromophores (potential electron exchangers) in PE’s primary structure, and significant hydrophobic patches on the surface of its α- and β-subunits are supposed to collectively contribute in the antioxidant virtues of PE. Altogether, results support the hypothesis that it is the PE’s antioxidant asset, which is responsible for its life-prolonging effect and thus could be exploited in the therapeutics of ROS-associated abnormalities including aging and neurodegeneration in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anwer K, Sonani R, Madamwar D, Singh R, Khan F, Bisetty K, et al. (2015) Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies. J Biomol Struct Dyn 33:121–133

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96

    Article  CAS  PubMed  Google Scholar 

  • Bagatini PB, Saur L, Rodrigues MF, Bernardino CC, Paim MF, Coelho GP, et al. (2011) The role of calcium channel blockers and resveratrol in the prevention of paraquat-induced parkinsonism in Drosophila melanogaster: a locomotor analysis. Invertebr Neurosci 11:43–51

    Article  CAS  Google Scholar 

  • Baret P, Septembre-Malaterre A, Rigoulet M, d’Hellencourt CL, Priault M, Gonthier MP, Devin A (2013) Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. Int J Biochem Cell Biol 45:167–174

    Article  CAS  PubMed  Google Scholar 

  • Bei H, Guang-Ce W, Chen-Kui Z, Zhen-gang L (2000) The experimental research of R-phycoerythrin subunits on cancer treatment: a new photosensitizer in PDT. Cancer Biother Radiopharm 17:35–42

    Article  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakdar H, Pabbi S (2012) Extraction and purification of phycoerythrin from Anabaena variabilis (CCC421). Phykos 42:25–31

    Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F (1995) Structural analysis of autoxidative peptides from soybean conglycinin. J Agric Food Chem 43:574–578

    Article  CAS  Google Scholar 

  • Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A, et al. (2010) Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40:424–431

    Article  CAS  PubMed  Google Scholar 

  • Diomede L, Rigacci S, Romeo M, Stefani M, Salmona M (2013) Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PLoS one 8. doi: 10.1371/journal.pone.0058893

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48:430–441

    Article  CAS  PubMed  Google Scholar 

  • Gaigalas A, Gallagher T, Cole KD, Singh T, Wang L, Zhang YZ (2006) A multistate model for the fluorescence response of R-phycoerythrin. Photochem Photobiol 82:635–644

    Article  CAS  PubMed  Google Scholar 

  • Galeno DML, Carvalho RP, de Araújo Boleti AP, Lima AS, de Almeida PDO, Pacheco CC, Lima ES (2014) Extract from Eugenia punicifolia is an antioxidant and inhibits enzymes related to metabolic syndrome. Appl Biochem Biotechnol 172:311–324

    Article  CAS  Google Scholar 

  • Garfin D (1990) One-dimensional gel electrophoresis. In: Deutscher MP, Abelson JN, Simon MI (eds) Guide to protein purification. Academic Press, California, pp. 425–441

    Chapter  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press pp. 571–607

  • Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I, et al. (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131:193–202

    Article  CAS  PubMed  Google Scholar 

  • Hatia S, Septembre-Malaterre A, Le Sage F, Badiou-Beneteau A, Baret P, Payet B, Gonthier MP (2014) Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress. Free Radic Res 48:387–401

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, Lo WH, Yen GC (2007) Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway. J Agric Food Chem 55:7359–7365

    Article  CAS  PubMed  Google Scholar 

  • Iwaniak A, Minkiewicz P (2007) Proteins as the source of physiologically and functionally active peptides. Acta Sci Pol Technol Aliment 6:5–15

    CAS  Google Scholar 

  • Iwasa H, Yu S, Xue J, Driscoll M (2010) Novel EGF pathway regulators modulate C. elegans healthspan and lifespan via EGF receptor, PLC-γ, and IP3R activation. Aging Cell 9:490–505

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Del-Rio M, Daza-Restrepo A, Velez-Pardo C (2008) The cannabinoid CP55, 940 prolongs survival and improves locomotor activity in Drosophila melanogaster against paraquat: implications in Parkinson’s disease. Neurosci Res 61:404–411

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochem Res 35:227–238

    Article  CAS  PubMed  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Jeon YM, Noh JH, Lee MY (2011) Isolation and characterization of a new phycoerythrin from the cyanobacterium Synechococcus sp. ECS-18. J Appl Physiol 23:137–142

    CAS  Google Scholar 

  • Kumar J, Park KC, Awasthi A, Prasad B (2015) Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS Neurol Disord Drug Targets 14:295–302

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sonani RR, Sharma M, Gupta GD, Madamwar D (2016) Crystal structure analysis of C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM. Photosynth Res. DOI 10.1007/s11120-016-0259-5

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Link C (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24:397–413

    Article  CAS  PubMed  Google Scholar 

  • Liu LN, Chen XL, Zhang XY, Zhang YZ, Zhou BC (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116:91–100

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu L, Cheng N, Lin L, Zhang C (2000) Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J Appl Phycol 12:125–130

    Article  CAS  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Shrivastav A, Mishra S (2011) Preparation of highly purified C-phycoerythrin from marine cyanobacterium Pseudanabaena sp. protein expression and purification. Protein Expr Purif 80:234–238

    Article  CAS  PubMed  Google Scholar 

  • Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munier M, Morançais M, Dumay J, Jaouen P, Fleurence J (2015) One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. J Chromatogr B 992:23–29

    Article  CAS  Google Scholar 

  • Narang D, Sood S, Thomas MK, Dinda AK, Maulik SK (2004) Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart. BMC Pharmacol 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu JF, Chen ZF, Wang GC, Zhou BC (2010) Purification of phycoerythrin from Porphyra yezoensis Ueda (Bangiales, Rhodophyta) using expanded bed absorption. J Appl Physiol 22:25–31

    CAS  Google Scholar 

  • Pandey A, Khatoon R, Saini S, Vimal D, Patel DK, Narayan G, Chowdhuri DK (2015) Efficacy of methuselah gene mutation toward tolerance of dichlorvos exposure in Drosophila melanogaster. Free Radic Biol Med 83:54–65

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Kim SH, Kim YS, Ryu SY, Hwang JT, Yang HJ, et al. (2009) Luteolin inhibits adipogenic differentiation by regulating PPARγ activation. Biofactors 35:373–379

    Article  CAS  PubMed  Google Scholar 

  • Parmar A, Singh NK, Kaushal A, Sonawala S, Madamwar D (2011) Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresour Technol 102:1795–1802

    Article  CAS  PubMed  Google Scholar 

  • Pendleton RG, Parvez F, Sayed M, Hillman R (2002) Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 2002(300):91–96

    Article  Google Scholar 

  • Pietsch K, Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R, Steinberg CE (2011) Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12:329–347

    Article  CAS  PubMed  Google Scholar 

  • Pumas C, Peerapornpisal Y, Vacharapiyasophon P, Leelapornpisid P, Boonchum W, Ishii M, Khanongnuch C (2012) Purification and characterization of a thermostable phycoerythrin from hot spring cyanobacterium Leptolyngbya sp. KC45. Int J Agric Biol 14:121–125

    CAS  Google Scholar 

  • Rastogi RP, Madamwar D (2015) UV-induced oxidative stress in cyanobacteria: how life is able to survive? Biochem Anal Biochem 4:173. doi:10.4172/2161-1009.1000173

    Article  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27:521–539

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D (2015a) Physico-chemical factors affecting the in vitro stability of phycobiliproteins from Phormidium rubidum A09DM. Bioresour Technol 190:219–226

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D (2015b) Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol 91:837–844

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D, Incharoensakdi A (2016) Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res 16:110–118

    Article  Google Scholar 

  • Rastogi RP, Sonani RR, Patel AB, Madamwar D (2015c) Occurrence of a functionally stable photoharvesting single peptide allophycocyanin α-subunit (16.4 kDa) in the cyanobacterium Nostoc sp. R76DM. RSC Advances 5:87598

  • Rimbau V, Camins A, Romay C, González R, Pallàs M (1999) Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci Lett 276:75–78

    Article  CAS  PubMed  Google Scholar 

  • Riss J, Décordé K, Sutra T, Delage M, Baccou JC, Jouy N, et al. (2007) Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem 55:7962–7967

    Article  CAS  PubMed  Google Scholar 

  • Román RB, Alvarez-Pez JM, Fernández FA, Grima EM (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85

    Article  Google Scholar 

  • Romay CH, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rukmini MS, D’souza B, D’souza V (2004) Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. Indian J Clin Biochem 19:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Hasan SS, Kumar J, Raj I, Pathan AA, et al. (2014) Crystal structure and interaction of phycocyanin with β-secretase: a putative therapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets 13:691–698

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Parmar A, Sonani RR, Madamwar D (2012) Isolation, identification and characterization of novel thermotolerant Oscillatoria sp. N9DM: change in pigmentation profile in response to temperature. Process Biochem 47:2472–2479

    Article  CAS  Google Scholar 

  • Singh NK, Sonani RR, Awasthi A, Prasad B, Patel AR, Kumar J, Madamwar D (2015) Phycocyanin moderates aging and proteotoxicity in Caenorhabditis elegans. J Appl Phycol. doi:10.1007/s10811-015-0772-5

    PubMed  Google Scholar 

  • Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, et al. (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonani RR, Rastogi RP, Madamwar D (2015a) Antioxidant potential of phycobiliproteins: role in anti-aging research. Biochem Anal Biochem 4:172. doi:10.4172/2161-1009-1000172

    Article  Google Scholar 

  • Sonani RR, Rastogi RP, Joshi M, Madamwar D (2015b) A stable and functional single peptide phycoerythrin (15.45 kDa) from Lyngbya sp. A09DM. Int J Biol Macromol 74:29–35

    Article  CAS  PubMed  Google Scholar 

  • Sonani RR, Singh NK, Awasthi A, Prasad B, Kumar J, Madamwar D (2014a) Phycoerythrin extends life span and health span of Caenorhabditis elegans. Age 36:9717

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonani RR, Singh NK, Kumar J, Thakar D, Madamwar D (2014b) Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: an antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochem 49:1757–1766

    Article  CAS  Google Scholar 

  • Sonani RR, Rastogi RP, Patel R, Madamwar D (2016) Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem. doi:10.4331/wjbc.v7.i1.00

    PubMed  PubMed Central  Google Scholar 

  • Sonani RR, Sharma M, Gupta GD, Kumar V, Madamwar D (2015c) Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study. Acta Cryst F: Str Biol Com 71:998–1004

    Article  CAS  Google Scholar 

  • Soni BR, Hasan MI, Parmar A, Ethayathulla AS, Kumar RP, Singh NK, et al. (2010) Structure of the novel 14 kDa fragment of α-subunit of phycoerythrin from the starving cyanobacterium Phormidium tenue. J Struct Biol 171:247–255

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatin SM, Varadarajan S, Link CD, Butterfield DA (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid ß-peptide (1–42) Neurobiol. Aging 20:325–330

    CAS  Google Scholar 

Download references

Acknowledgments

Datta Madamwar acknowledges University Grant Commission (UGC), New Delhi for financial help in form of CENTRE OF ADVANCED STUDY (CAS) program. Ravi R Sonani is highly thankful to the Department of Science and Technology (DST), New Delhi, and Indo-French Centre for the Promotion of Advance Research (IFCPAR) for the financial support in form of INSPIRE (IF120712) and Raman-Charpak bi-national fellowships, respectively. Rajesh P. Rastogi is thankful to the University Grant Commission (UGC), New Delhi, India, for Dr. D.S. Kothari Postdoctoral Research Grant. Niraj Kumar Singh acknowledges the Department of Science and Technology (DST), New Delhi, for financial support in the form of DST (SERB) Fast track young scientist project (SB/YS/LS-290/2013). Jitendra Kumar acknowledges the DST for young scientist award (SB/YS/LS-166/2014) and DBT-Patna University-IPLS Program (BT/PR4577/INF/22/149/2012) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra Kumar, Anand K. Tiwari, Ranjitsinh V. Devkar or Datta Madamwar.

Additional information

Handling editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonani, R.R., Rastogi, R.P., Singh, N.K. et al. Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress. Protoplasma 254, 849–862 (2017). https://doi.org/10.1007/s00709-016-0996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0996-5

Keywords

Navigation