Skip to main content
Log in

Morpho-histodifferentiation of Billbergia Thunb. (Bromeliaceae) nodular cultures

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Nodule cultures are formed through an intermediate morphogenetic route that lies between organogenesis and somatic embryogenesis. Although well described in many species, different aspects of the morphological and histological development of nodules remain to be clarified. Based on their threatened status and high ornamental value, Billbergia alfonsi-joannis and Billbergia zebrina, two epiphytic bromeliad species endemic to the South American Atlantic Forest, were studied. Nodular cultures were induced to grow from nodal segments taken from etiolated seedlings grown in vitro for 12 weeks in the dark on MS medium supplemented with 1 μM TDZ. Samples were taken for analysis weekly over 8 weeks of growth and analyzed under light, transmission electron, and scanning electron microscopes. Morphological and histological analysis showed that nodular clusters originated from stem pericycles and consisted of a polycenter, cambial tissue, cortical parenchyma, and a covering tissue. The polycenter consisted of an organizational center dispersed in parenchymal tissue. Each organizational center was formed by a vascular system surrounded by a bundle sheath. A cambial tissue surrounded these polycenters, promoting the regeneration of new nodules and leading to the formation of buds and roots. Primary nodules could generate secondary nodules in a repetitive process. Thus, histological analysis revealed the origin and formation of nodular cultures. These new data will support the establishment of micropropagation protocols and regeneration on a large scale for these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AB:

Axillary bud

BAF:

Billbergia alfonsi-joannis

BZ:

Billbergia zebrina

CA:

Cambium

CC:

Cambial cell

OC:

Organizational center

LE:

Leaf

LM:

Light microscopy

LP:

Leaf primordia

MC:

Meristematic cell

MS:

Murashige and Skoog (1962) basal media

NO:

Nodule

NV:

Nodule vascularization

PA:

Parenchyma

PE:

Periderm

PV:

Provascular cell

RO:

Root

SEM:

Scanning electron microscopy

SN:

Secondary nodule

ST:

Stem

SNE:

Sieve neoelement

TDZ:

Thidiazuron

TEM:

Transmission electron microscopy

TN:

Tracheal neoelement

TU:

Tunic

VC:

Vascular cylinder

References

  • Alves GM, Guerra MP (2001) Micropropagation for mass propagation and conservation of Vriesea friburguensis var. Paludosa Microbuds J Bromeliad Soc 51:202–212

    Google Scholar 

  • Alves GM, Dal Vesco LL, Guerra MP (2006) Micropropagation of the Brazilian endemic bromeliad Vriesea reitzii trough nodule culture. Sci Hortic 110:204–207

    Article  CAS  Google Scholar 

  • Batista D, Ascensão L, Sousa MJ, Pais MS (2000) Adventitious shoot mass production of hop (Humulus lupulus L.) var. Eroica in liquid medium from organogenic nodule cultures. Plant Sci 151:47–57

    Article  CAS  Google Scholar 

  • Benzing DH (1980) The biology of the bromeliads. Mad River Press, USA

    Google Scholar 

  • Brasil, Ministério do Meio Ambiente (2008) Lista Oficial das Espécies da Flora Brasileira Ameaçadas de extinção. MMA, Brasília

  • Carneiro LA, Araújo RFG, Brito GJM, Fonseca MHPB, Costa A, Crocomo OJ, Mansur E (1999) In vitro regeneration from leaf explants of Neoregelia cruenta (R. Graham) L.B. Smith, an endemic bromeliad from eastern Brazil. Plant Cell Tiss Org 55:79–83

    Article  Google Scholar 

  • Corredor-Prado JP, Schmidt EC, Guerra MP, Bouzon ZL, Dal Vesco LL, Pescador R (2015) Histodifferentiation and ultrastructure of nodular cultures from seeds of Vriesea friburgensis Mez var. Paludosa (L.B. Smith) L.B. Smith and leaf explants of Vriesea reitzii Leme & A. Costa (Bromeliaceae). J Microsc Ultrastruct. doi:10.1016/j.jmau.2015.04.001

    Google Scholar 

  • Dal Vesco LL, Guerra MP (2010) In vitro morphogenesis and adventitious shoot mass regeneration of Vriesea reitzii from nodule cultures. Sci Hortic 125:748–755

    Article  CAS  Google Scholar 

  • Dal Vesco LL, Stefenon VM, Welter LJ, Scherer RF, Guerra MP (2011) Induction and scale-up of Bilbergia zebrina nodule cluster cultures: implications for mass propagation, improvement and conservation. Sci Hortic 128:515–522

    Article  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy. Meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Book  Google Scholar 

  • Fay MF (1992) Conservation of rare and endangered plants using in vitro methods. In Vitro Cell Dev B 28:l–4

    Google Scholar 

  • Fermino Júnior PCP, Lando AP, Santos M, Pescador R (2014) Morfo-histologia de culturas nodulares na micropropagação de Aechmea setigera Mart. Ex Schult. & Schult. F. (Bromeliaceae). Evid 14:85–98

    Google Scholar 

  • Ferreira S, Batista D, Serrazina S, Pais MS (2009) Morphogenesis induction and organogenic nodule differentiation in Populus euphratica Oliv. Leaf explants. Plant Cell Tiss Org 96:35–43

    Article  Google Scholar 

  • Fortes AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87:971–979

    Article  CAS  PubMed  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture: the technology. Exegetics, Edington

  • Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microsc 132:81–85

    Article  CAS  PubMed  Google Scholar 

  • Guerra MP, Dal Vesco LL (2010) Strategies for the micropropagation of bromeliads. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants: methods in molecular biology. Humana Press-Springer, New York, pp 47–66

    Chapter  Google Scholar 

  • Haensch KT (2004) Morpho­histological study of somatic embryo­like structures in hypocotyl cultures of Pelargonium x hortorum Bailey. Plant Cell Rep 22:376–381

    Article  CAS  PubMed  Google Scholar 

  • Horridge GA, Tamm SL (1969) Critical point drying for scanning electron microscopy study of ciliary motion. Science 163:817–818

    Article  CAS  PubMed  Google Scholar 

  • Krauss BH (1948) Anatomy of the vegetative organs of the pineapple, Ananas comosus (L.) Merr. I. Introduction, organography, the stem, and the lateral branch or axillary buds. Bot Gaz 110:159–217

    Article  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    CAS  PubMed  Google Scholar 

  • McCown BH, Zeldin EL, Pinkalla HÁ, Dedolph RR (1988) Nodule culture: a developmental pathway with high potencial for regeneration, automated micropropagation, and plant metabolite production from woody plants. In: Hanover JH, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, pp 149–166

    Chapter  Google Scholar 

  • Menezes NL, Silva DC, Arruda RCO, Melo-de-Pinna GF, Cardoso VA, Castro NM, Scatena VL, Scremin-Dias E (2005) Meristematic activity of the endodermis and the pericycle in the primary thickening in monocotyledons. Considerations on the “PTM”. An Acad Bras Cienc 77:259–274

    Article  PubMed  Google Scholar 

  • Morel GM, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140

    Article  CAS  Google Scholar 

  • Moyo M, Finnie JF, van Staden J (2009) In vitro morphogenesis of organogenic nodules derived from Sclerocarya birrea subsp. Caffra leaf explants. Plant Cell Tiss Org 98:273–280

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and biossays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ntui VO, Azadi P, Supaporn H, Mii M (2010) Plant regeneration from stem segment-derived friable callus of “Fonio” (Digitaria exilis (L.) Stapf.). Sci Hortic 125:494–499

    Article  CAS  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphy Pty, Melburne

    Google Scholar 

  • O’Brien TP, Feder N, M’ccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–73

    Article  Google Scholar 

  • Ogura Y (1972) Comparative anatomy of vegetative organs of the pteridophytes. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Piéron S, Belaizi M, Boxus P (1993) Nodule culture, a possible morphogenetic pathway in Chicorium intybus L. propagation. Sci Hortic 53:1–11

    Article  Google Scholar 

  • Piéron S, Boxus P, Dekegel D (1998) Histological study of nodule morphogenesis from Chicorium intybus L. leaves cultivated in vitro. In vitro Cell Dev Biol Plant 34:87–93

    Article  Google Scholar 

  • Reitz R (1983) Bromeliáceas e a malária—bromélia endêmica. Herbário Barbosa Rodrigues, Itajaí

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salaj J, Petrovska B, Obert B, Pret’ova A (2005) Histological study of embryo-like structures initiated from hypocotyls segments of flax (Linum usitatissimum L.). Plant Cell Rep 24:590–595

    Article  CAS  PubMed  Google Scholar 

  • Scherer RF, Garcia AC, Fraga HPF, Dal Vesco LL, Steinmacher DA, Guerra MP (2013) Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Sci Hortic 151:38–45

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Teng WL (1997) An alternative propagation method of Ananas comosus trough nodule culture. Plant Cell Rep 16:454–457

    CAS  Google Scholar 

  • Warrag E, Lesney MS, Rockwood DJ (1991) Nodule culture and regeneration of Eucalyptus grandis hybrids. Plant Cell Rep 9:586–589

    Article  CAS  PubMed  Google Scholar 

  • Woo SM, Wetzstein HY (2008) Morphological and histological evaluations of in vitro regeneration in Elliottia racemosa leaf explants induced on media with thidiazuron. J Amer Soc Hort Sci 133:167–172

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council for Scientific and Technological Development (CNPq, Brazil) and Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil). The authors acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Plant Anatomy Laboratory (LAVEG), and Physiology Laboratory of Plant Development and Genetics (LFDGV) of the Federal University of Santa Catarina, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaysi Ventura de Souza.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.V., Thiesen, J.F., Lando, A.P. et al. Morpho-histodifferentiation of Billbergia Thunb. (Bromeliaceae) nodular cultures. Protoplasma 254, 435–443 (2017). https://doi.org/10.1007/s00709-016-0962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0962-2

Keywords

Navigation