Skip to main content
Log in

Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L.

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In the present study, an improved plant regeneration protocol via primary and secondary somatic embryogenesis was established in two Co-1 and Rajendra Swathi (RS) varieties of Coriandrum sativum L. Callus was induced from root explants on 2, 4-D (0.5–2.0 mg/l) supplemented MS. The addition of BA (0.2 mg/l) improved callus induction and proliferation response significantly. The maximum callus induction frequency was on 1.0 mg/l 2, 4-D and 0.2 mg/l BA added MS medium (77.5 % in Co-1 and 72.3 % in RS). The callus transformed into embryogenic callus on 2, 4-D added MS with maximum embryogenic frequency was on 1.0 mg/l. The granular embryogenic callus differentiated into globular embryos on induction medium, which later progressed to heart-, torpedo- and cotyledonary embryos on medium amended with 0.5 mg/l NAA and 0.2 mg/l BA. On an average, 2–3 secondary somatic embryos (SEs) were developed on mature primary SEs, which increased the total embryo numbers in culture. Histology and scanning electron microscopy (SEM) studies are presented for the origin, development of primary and secondary embryos in coriander. Later, these induced embryos converted into plantlets on 1.0 mg/l BA and 0.2 mg/l NAA-amended medium. The regenerated plantlets were cultured on 0.5 mg/l IBA added ½ MS for promotion of roots. The well-rooted plantlets were acclimatized and transferred to soil. The genetic stability of embryo-regenerated plant was analyzed by flow cytometry with optimized Pongamia pinnata as standard. The 2C DNA content of RS coriander variety was estimated to 5.1 pg; the primary and secondary somatic embryo-derived plants had 5.26 and 5.44 pg 2C DNA content, respectively. The regenerated plants were genetically stable, genome size similar to seed-germinated coriander plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

24-D:

2,4-dichlorophenoxy acetic acid

BA:

6-Benzyladenine

GA3 :

Gibberellic acid

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog (1962) medium

NAA:

α-Napthalene acetic acid

SE:

Somatic embryo

PSE:

Primary somatic embryogenesis

SSE:

Secondary somatic embryogenesis

SEM:

Scanning electron microscopy

References

  • Aslam J, Mujib A, Sharma MP (2014) Somatic embryos in Catharanthus roseus: a scanning electron microscopic study. Not Sci Biol 6(2):167–172

    Article  Google Scholar 

  • Bhuiyan MNI, Begum J, Sultana M (2009) Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J Pharmacol 4:150–153

    Article  Google Scholar 

  • Carvalho LC, Goulao L, Oliveira C, Goncalves JC, Amancio S (2004) RAPD assessment for identification of clonal identity and genetic stability of in vitro propagated Chestnut hybrids. Plant Cell Tissue Organ Cult 77:23–27

    Article  CAS  Google Scholar 

  • Chandrasekhar T, Hussain TM, Gopal RG, Rao SJV (2006) Somatic embryogenesis of Tylophora indica (Burm.F.) Merril. An important medicinal plant. Int J Appl Sci Eng 4:33–40

    Google Scholar 

  • Chen RR, Zhang JT, Ping LB, Guo SS, Hao JP, Zhou XM (1995) Somatic embryogenesis and artificial seed in coriander (Coriandrum sativum L.). Biotechnol Agric For 31:334–342

    Google Scholar 

  • Chithra V, Leelamma S (2000) Coriandrum sativum—effect on lipid metabolism in 1, 2- dimethyl hydrazine induced colon cancer. J Ethnopharmacol 71:457–463

    Article  CAS  PubMed  Google Scholar 

  • Choudhury RR, Basak S, Ramesh AM, Rangan L (2014) Nuclear DNA content of Pongamia pinnata L. and genome size stability of in vitro-regenerated plantlets. Protoplasma 251:703–709

    Article  CAS  PubMed  Google Scholar 

  • Clarindo WR, Carvalho CR, Arauojo FS, Abreu IS, Otoni WC (2008) Recovering polyploid papaya in vitro regenerants as screened by flow cytometry. Plant Cell Tissue Organ Cult 92:207–214

    Article  Google Scholar 

  • Cortes EJ, Gómez AS, Villalobos PR (2004) Anti-mutagenicity of coriander (Coriandrum sativum L) juice on the mutagenesis produced by plant metabolites of aromatic amines. Toxicol Lett 153:283–292

    Article  Google Scholar 

  • Couillerot JP, Windels D, Vazquez F, Michalski JC, Hilbert JL, Blervacq AS (2012) Pretreatments, conditioned medium and co-culture increase the incidence of somatic embryogenesis of different. Cichorium species Plant Signal Behav 7(1):1–11

    Article  Google Scholar 

  • Darughe F, Barzegar M, Sahari MA (2012) Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake. Int Food Res J 19(3):1253–1260

    CAS  Google Scholar 

  • Das A, Kesari V, Rangan L (2013) Micropropagation and cytogenetic assessment of Zingiber species of Northeast India. 3. Biotech 3:471–479

    Google Scholar 

  • Delporte F, Muhovski Y, Pretova A, Watillon B (2013) Analysis of expression profiles of selected genes associated with the regenerative property and the receptivity to gene transfer during somatic embryogenesis in Triticum aestivum L. Mol Biol Rep 40:5883–5906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delporte F, Pretova A, Jardin P, Watillon B (2014) Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 251:1455–1470

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  PubMed  Google Scholar 

  • Emamghoreishi M, Khasaki M, Aazam MF (2005) Coriandrum sativum L.: evaluation of its anxiolytic effects in the elevated plus maze. J Ethnopharmacol 96:365–370

    Article  PubMed  Google Scholar 

  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345

    Article  Google Scholar 

  • Giorgetti L, Ruffini Castiglione M, Turrini A, Martini G, NutiRonchi V, Geri C (2011) Cytogenetic and histological approach for early detection of “mantled” somaclonal variants of oil palm regenerated by somatic embryogenesis: first results on the characterization of regeneration system. Caryologia 64:223–234

    Article  Google Scholar 

  • Głowacka K, Jezowski S, Kaczmarek Z (2010) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult 102:79–86

    Article  Google Scholar 

  • Hamideh J, Khosro P, Javad NDM (2012) Callus induction and plant regeneration from leaf explants of Falcuria vulgaris an important medicinal plant. J Med Plants Res 6(18):3407–3414

    CAS  Google Scholar 

  • Inpuay K, Te-chato S (2012) Primary and secondary somatic embryos as tool for the propagation and artificial seed production of oil palm. J Agric Technol 8(2):597–609

    Google Scholar 

  • Jana S, Sivanesan I, Lim MY, Jeong BR (2013) In vitro zygotic embryo germination and somatic embryogenesis through cotyledonary explants of Paeonia lactiflora Pall. Flower Res J 21(1):17–22

    Article  Google Scholar 

  • Jayanthi M, Mandal PK (2001) Plant regeneration through somatic embryogenesis and RAPD analysis of regenerated plants in Tylophora indica (Burm. f. Merrill.). In Vitro Cell Dev Biol-Plant 37:576–580

    Article  CAS  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Botanical Microtechnique. McCraw-Hill Book, New York, p 523

    Google Scholar 

  • Junaid A, Mujib A, Bhat MA, Sharma MP (2006) Somatic embryo proliferation, maturation and germination in Catharanthus roseus. Plant Cell Tissue Organ Cult 84:325–332

    Article  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation inplants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Kim YS, Choi YE (2011) Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the plants regenerated from them. Plant Biotechnol Rep 5:255–263

    Article  Google Scholar 

  • Kim YJ, Lee OR, Kim KT, Yang DC (2012) High frequency of plant regeneration through cyclic secondary somatic embryogenesis in Panax ginseng. J Ginseng Res 36(4):442–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SP, Kumari BDR (2010) Effect of primary and secondary somatic embryogenesis in Safflower (Carthamus tinctorius L) at morphological and biochemical levels. Am-Eurasian J Agric Environ Sci 8(6):784–792

    Google Scholar 

  • Kumar V, Moyo M, Van Staden J (2015) Somatic embryogenesis of Pelargonium sidoides DC. Plant Cell Tissue Organ Cult 121:571–577

    Article  Google Scholar 

  • Li Z, Mize K, Campbell F (2010) Regeneration of daylily (Hemerocallis) from young leaf segments. Plant Cell Tissue Organ Cult 102:199–204

    Article  Google Scholar 

  • Lincy AK, Remashree AB, Sasikumar B (2009) Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Bot Croat 68(1):93–103

    CAS  Google Scholar 

  • Liu W, Liang Z, Shan C, Marsolais F, Tian L (2013) Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. In Vitro Cell Dev Biol-Plant 49:17–23

    Article  Google Scholar 

  • Lopez PA, Widrlechner MP, Simon PW, Rai S, Boylston TD, Isbell TA, Bailey TB, Gardner CA, Wilson LA (2008) Assessing phenotypic, biochemical and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genet Resour Crop Evol 55:247–275

    Article  CAS  Google Scholar 

  • Loureiro J, Capelo A, Brito G, Rodriguez E, Silva S, Pinto G, Santos C (2007a) Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biol Plant 51(1):7–14

    Article  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007b) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makowczynska J, Andrzejewska-Golec E, Sliwinska E (2008) Nuclear DNA content in different plant material of Plantago asiatica L. cultured in vitro. Plant Cell Tissue Organ Cult 94:65–71

    Article  CAS  Google Scholar 

  • Martin KP (2004) Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L. In Vitro Cell Dev Biol-Plant 40:586–591

    Article  CAS  Google Scholar 

  • Matasyoh JC, Maiyo ZC, Ngure RM, Chepkorir R (2009) Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum L. Food Chem 113:526–529

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Hahn EJ, Paek KY (2008) Recurrent somatic embryogenesis and plant regeneration in Coriandrum sativum L. Sci Hortic 118:168–171

    Article  CAS  Google Scholar 

  • Naquvi KJ, Ali M, Ahamad J (2012) Antidiabetic activity of aqueous extract of Coriandrum sativum L. fruits in streptozotocin induced rats. Int J Pharmcol Pharmacol Sci 4(1):239–240

    Google Scholar 

  • Neha Mohan PV, Suganthi V, Gowri S (2013) Evaluation of anti-inflammatory activity in ethanolic extract of Coriandrum sativum L. using carrageenan induced paw oedema in albino rats. Der Pharm Chem 5(2):139–143

    Google Scholar 

  • Pal SP, Alam I, Anisuzzaman M, Sarker KK, Sharmin SA, Alam MF (2007) Indirect organogenesis in summer squash (Cucurbita pepo L.). Turk J Agric For 31:63–70

    CAS  Google Scholar 

  • Park SY, Cho HM, Moon HK, Kim YW, Paek KY (2011) Genotypic variation and aging effects on the embryogenic capability of Kalopanax septemlobus. Plant Cell Tissue Organ Cult 105:265–270

    Article  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast- derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlovic S, Vinterhalter B, Zdravkovic-Korac S, Vinterhalter D, Zdravkovic J, Cvikic D, Mitic N (2012) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell Tissue Organ Cult 113:497–506

    Google Scholar 

  • Peyvandi M, Noormohammadi Z, Banihashemi O, Farahani F, Majd A, Hosseini-Mazinani M, Sheidai M (2009) Molecular analysis of genetic stability in long-term micropropagated shoots of Olea euroaea L. (ev. Dezful). Asian J Plant Sci 8:146–152

    Article  CAS  Google Scholar 

  • Piatczak E, Kuzma L, Sitarek P, Wysokinska H (2015) Shoot organogenesis, molecular analysis and secondary metabolite production of micropropagated Rehmannia glutinosa Libosch. Plant Cell Tissue Organ Cult 120:539–549

    Article  CAS  Google Scholar 

  • Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globules Labill. Somatic embryos by flow cytometry. Theor Appl Genet 109:580–587

    Article  CAS  PubMed  Google Scholar 

  • Potter TL, Fagerson IS (1990) Composition of coriander leaf volatiles. J Agric Food Chem 38:2054–2056

    Article  CAS  Google Scholar 

  • Prakash V (1990) Leafy Spices. CRC Press Inc, Boca Raton, pp 31–32

    Google Scholar 

  • Rewers M, Drouin J, Kisiala A, Sliwinska E, Cholewa E (2012) In vitro regenerated wetland sedge Eriophorum vaginatum L. is genetically stable. Acta Physiol Plant 34:2197–2206

    Article  CAS  Google Scholar 

  • Rose RJ, Mantiri FR, Kurdyukov S, Chen SK, Wang XD, Nolan KE, Sheahan MB (2010) Developmental biology of somatic embryogenesis. In: Pua E-C, Davey MR (eds) Plant developmental biology-biotechnological perspectives, vol 2. Springer, Heidelberg, pp 3–26

    Chapter  Google Scholar 

  • Sharmin SA, Alam MJ, Sheikh MMI, Sarker KK, Khalekuzzaman M, Haque MA, Alam MF, Alam F (2014) Somatic embryogenesis and plant regeneration in Wedelia calendulacea Less. An endangered medicinal plant. Braz Arch Biol Technol 57(3):394–401

    Article  CAS  Google Scholar 

  • Siahsar B, Rahimi M, Tavassoli A, Raissi AS (2011) Application of biotechnology in production of medicinal plants. Am-Eurasian J Agric Environ Sci 11(3):439–444

    CAS  Google Scholar 

  • Silva F, Ferreira S, Duarte A, Mendonca DI, Domingues FC (2011) Antifungal activity of Coriandrum sativum L. essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 19:42–47

    Article  CAS  PubMed  Google Scholar 

  • Sliwinska E, Thiem B (2007) Genome size stability in six medicinal plant species propagated in vitro. Biol Plant 51:556–558

    Article  Google Scholar 

  • Swamy NR, Ugandhar T, Praveen M, Venkataiah P, Rambabu M, Upender M, Subhash K (2005) Somatic embryogenesis and plantlet regeneration from cotyledon and leaf explants of Solanum surattense. Indian J Biotechnol 4:414–418

    Google Scholar 

  • Tawfik AA, Noga G (2002) Cumin regeneration from seedling derived embryogenic callus in response to amended kinetin. Plant Cell Tissue Organ Cult 69:35–40

    Article  CAS  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  CAS  PubMed  Google Scholar 

  • Vidal AM, Costa MAPC, Souza AS, Almeida WAB, Souza FVD (2014) In vitro regeneration and morphogenesis of somatic embryos of cassava. Rev Ciênc Agron 45(3):558–565

    Article  Google Scholar 

  • Vieira-Santos A, Arrigoni-Blank MF, Fitzgerald-Blank A, Cardamone-Diniz LE, Pereira-Fernandes RM (2011) Biochemical profile of callus cultures of Pogostemon cablin (Blanco) Benth. Plant Cell Tissue Organ Cult 107:35–43

    Article  Google Scholar 

  • Von Arnold S, Sabala I, Bozhkov P, Dyachok JA, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Wissowzky A (1876) Ueber das Eosin als reagenz auf Hamoglobin und die Bildung von Blutgefassen und Blutkorperchen bei Saugetier und Hühnerembryonen. Arch Mikrosk Anat 13:479–496

    Article  Google Scholar 

  • You CR, Fan TJ, Gong XQ, Bian FH, Liang LK, Qu FN (2011) A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell Tissue Organ Cult 107:233–242

    Article  Google Scholar 

  • Zhang CX, Li Q, Kong L (2007) Induction, development and maturation of somatic embryos in Bunge’s pine (Pinus bungeana Zucc. ex Endl.). Plant Cell Tissue Organ Cult 91:273–280

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to UGC for the financial assistance in the form of Junior Research Fellowship and to NRCSS, Ajmer, Rajasthan, India, for providing the seeds of coriander varieties, BD-JH FACS Academy, Jamia Hamdard, New Delhi, for providing the facility of flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mujib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Pavla Binarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Mujib, A., Tonk, D. et al. Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L.. Protoplasma 254, 343–352 (2017). https://doi.org/10.1007/s00709-016-0954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-0954-2

Keywords

Navigation