Skip to main content
Log in

Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

NAM, ATAF, and CUC (NAC) domain-containing proteins are plant-specific transcription factors involved in stress responses and developmental regulation. MusaVND2 and MusaVND3 are vascular-related NAC domain-containing genes encoding for nuclear-localized proteins. The transcript level of MusaVND2 and MusaVND3 are gradually induced after induction of lignification conditions in banana embryogenic cells. Banana embryogenic cells differentiated to tracheary element-like cells after overexpression of MusaVND2 and MusaVND3 with a differentiation frequency of 63.5 and 23.4 %, respectively, after ninth day. Transgenic banana plants overexpressing either of MusaVND2 or MusaVND3 showed ectopic secondary wall deposition as well as transdifferentiation of cells into tracheary elements. Transdifferentiation to tracheary element-like cells was observed in cortical cells of corm and in epidermal and mesophyll cells of leaves of transgenic plants. Elevated levels of lignin and crystalline cellulose were detected in the transgenic banana lines than control plants. The results obtained are useful for understanding the molecular regulation of secondary wall development in banana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke WP, Radnidge P, Lai TE, Jensen PD, Hardin MT (2008) Digestion of waste bananas to generate energy in Australia. Waste Manag 28:527–533

    Article  CAS  PubMed  Google Scholar 

  • Cote FX, Domergue R, Monmarson S, Schwendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand Nain Physiol Plant 97:285–290

    Article  CAS  Google Scholar 

  • Eudes A, Sathitsuksanoh N, Baidoo EE, George A, Liang Y, Yang F, Singh S, Keasling JD, Simmons BA, Loqué D (2015) Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnol J. doi:10.1111/pbi.12310

    PubMed  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–63

    Article  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    Article  CAS  Google Scholar 

  • Ganapathi TR, Sidhaa M, Suprasannaa P, Ujjappa KM, Bapat VA, D’Souza SF (2008) Field performance and RAPD analysis of gamma-irradiated variants of banana cultivar ‘Giant Cavendish’ (AAA). Int J Fruit Sci 8:147–159

    Article  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 117:808–12

    Google Scholar 

  • Iwase A, Hideno A, Watanabe K, Mitsuda N, Ohme-Takagi M (2009) A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls. J Biotechnol 142:279–84

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 16:1855–1860

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange BM, Lapierre C, Sandermann H Jr (1995) Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol 108:1277–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697

    Article  CAS  PubMed  Google Scholar 

  • Ma QH (2009) The expression of cafferic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. J Exp Bot 60:2763–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima J, Takabe K, Fujita M, Saiki H (1997) Inhibition of phenylalanine ammonia-lyase activity causes the depression of lignin accumulation of secondary wall thickening in isolated Zinnia mesophyll cells. Protoplasma 196:99–107

    Article  CAS  Google Scholar 

  • Ogita S, Nomura T, Kishimoto T, Kato Y (2012) A novel xylogenic suspension culture model for exploring lignification in Phyllostachys bamboo. Plant Methods 8:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22:3461–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J 67:499–512

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Ona T, Sonoda T, Ito K, Shibata M, Tamai Y, Kojima Y, Ohshima J, Yokota S, Yoshizawa N (2001) Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Sci Technol 35:229–243

    Article  CAS  Google Scholar 

  • Ookawa T, Yasuda K, Kato H, Sakai M, Seto M et al (2010) Biomass production and lodging resistance in ‘leaf star’, a new long-culm rice forage cultivar. Plant Prod Sci 13:58–66

    Article  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto S, Mitsuda N (2015) Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. Plant Cell Physiol 56:299–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaewen AV, Langenkamper G, Graeve GK, Wenderoth I, Scheibe R (1995) Molecular characterization of the plastidic glucose-6-phosphate dehydrogenase from potato in comparison to its cytosolic counterpart. Plant Physiol 109:1327–1335

    Article  Google Scholar 

  • Seong ES, Yoo JH, Lee JG, Kim HY, Hwang IS, Heo K, Kim JK, Lim JD, Sacks EJ, Yu CY (2013) Antisense-overexpression of the MsCOMT gene induces changes in lignin and total phenol contents in transgenic tobacco plants. Mol Biol Rep 40:1979–86

    Article  CAS  PubMed  Google Scholar 

  • Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb CJ, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S (2010) Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sustainable Energy Rev 14:798–805

    Article  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–85

    Article  CAS  PubMed  Google Scholar 

  • Velásquez-Arredondo HI, Ruiz-Colorado AA, De Oliveira S Jr (2010) Ethanol production process from banana fruit and its lignocellulosic residues: energy analysis. Energy 35:3081–3087

    Article  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Demura T (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 27:237–242

    Article  CAS  Google Scholar 

  • Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol 153:906–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqué D (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Li B, Nelson CD, McKeand SE, Batista VB, Mullin TJ (2006) Association of the cad-n1 allele with increased stem growth and wood density in full-sib families of loblolly pine. Tree Genet Genomes 2:98–108

    Article  Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors Involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007a) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Ye ZH (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152:1044–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007b) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhong R, Ye ZH (2014) Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS One 9, e105726

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. SP Kale, Head, Nuclear Agriculture and Biotechnology Division, BARC for his constant encouragement.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ganapathi.

Additional information

Handling Editor: Burkhard Becker

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(PDF 169 kb)

Online resource 2

(PDF 35 kb)

Online resource 3

(PDF 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S., Tak, H. & Ganapathi, T.R. Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants. Protoplasma 253, 431–446 (2016). https://doi.org/10.1007/s00709-015-0822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0822-5

Keywords

Navigation