Skip to main content
Log in

Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The in vitro effect of cadmium on apical segments of Hypnea musciformis was examined. Over a period of 7 days, the segments were cultivated with different concentrations of cadmium, ranging from 50 to 300 μM. The samples were processed for microscopic and histochemical analysis of growth rates, content of photosynthetic pigments, and photosynthetic performance. Cadmium treatments increased cell wall thickness and the accumulation of plastoglobuli. Destruction of chloroplast internal organization was observed. Compared to controls, algae exposed to cadmium showed growth rate reduction, depigmentation, and blending in the lateral branches. The content of photosynthetic pigments, including chlorophyll a and phycobiliproteins, decreased after exposure to different concentrations of cadmium. These results agree with the decreased photosynthetic performance and relative electron transport rate observed after exposure of algae to cadmium. Taken together, these findings strongly indicate that cadmium negatively affects the architecture and metabolism of the carragenophyte H. musciformis, thus posing a threat to the economic vitality of this red macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrade LR, Farina M, Amado Filho GM (2002) Role of Padina gymnospora (Dictyotales, Phaeophyceae) cell walls in cadmium accumulation. Phycol 41:39–48

    Article  Google Scholar 

  • Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, Plymouth

    Google Scholar 

  • Collén J, Pinto E, Pedersén M, Colepicolo P (2003) Induction of oxidative stress in the red macroalgae Gracilaria tenuisitipitata by pollutant metals. Arch Environ Contam Toxicol 45:337–342

    Article  PubMed  Google Scholar 

  • Diannelidis BE, Delivopoulos GS (1997) The effects of zinc, copper and cadmium on the fine structure of Ceramium ciliatum (Rhodophyceae, Ceramiales). Mar Environ Res 44:127–134

    Article  CAS  Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas. Texas Contrib Mar Sci Austin 15:1–228

    Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic, London

    Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32:327–347

    Article  CAS  Google Scholar 

  • Gordon EM, McCandless EL (1973) Ultrastructure and histochemistry of Chondrus crispus Stackhouse. In: Harvey MJ, McLachlan J (eds) Chondrus crispus. Nova Scotia Institute of Science, Halifax, pp 111–133

    Google Scholar 

  • Greger M, Ogren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Plant Physiol 83:129–135

    Article  CAS  Google Scholar 

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green and red seaweeds. Chem Eng J 97:249–255

    Article  CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Holzinger A, Roleda MY, Lütz C (2009) The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron 40:831–838

    Article  PubMed  Google Scholar 

  • Hu S, Tang CH, Wu M (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187:65–71

    Article  CAS  Google Scholar 

  • Kursar TA, van Der Meer J, Alberte RS (1983) Light-harvesting system of the red alga Gracilaria tikvahiae. I. Biochemical analyses of pigment mutations. Plant Physiol 73:353–360

    Article  PubMed  CAS  Google Scholar 

  • Mamboya FA, Pratap HB, Mtolera M, Bjork M (1999) The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergensenii. In: Richmond MD, Francis J (eds) Proceedings of the Conference on Advances on Marine Sciences in Tanzania, pp 185–192

  • Oliveira EC, Paula EJ, Plastino EM, Petti R (1995) Metodologías para el cultivo no axenico de macroalgas marinas in vitro. In: Alveal K, Ferrario EM, Oliveira EC (eds) Manual de métodos ficológicos. Universidad de Concepción, Concepción, pp 429–447

    Google Scholar 

  • Penniman CA, Mathieson AC, Penniman CE (1986) Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire. Bot Mar 29:147–154

    Article  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at light pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Rocchetta I, Leonardi PI, Amado Filho G, Molina MCR, Conforti V (2007) Ultrastructure and X-ray microanalysis of Euglena gracilis (Euglenophyta) under chromium stress. Phycol 46:300–306

    Article  Google Scholar 

  • Schmidt EC, Scariot LA, Rover T, Bouzon ZL (2009) Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure. Micron 40:860–869

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EC, Santos R, Horta PA, Maraschin M, Bouzon ZL (2010) Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): changes in cell organization, growth and photosynthetic performance. Micron 41:919–930

    Article  PubMed  CAS  Google Scholar 

  • Sheng PX, Ting Y, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  PubMed  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effects of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Plant Physiol 63:293–298

    Article  CAS  Google Scholar 

  • Talarico L (1996) Phycobiliproteins and phycobilisomes in red algae: adaptive responses to light. Sci Mar 60:205–222

    CAS  Google Scholar 

  • Talarico L (2002) Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ Pollut 120:813–821

    PubMed  CAS  Google Scholar 

  • Talarico L, Bozo S, Maranzana G (1997) Preliminary observations on Audouinella saviana (Meneghini) Woelkerling (Nemaliales, Rhodophyta) cultured at increasing Cd concentrations. Phycol 36:111

    Google Scholar 

  • Visviki I, Rachlin JW (1992) Ultrastructural changes in Dunaliella minuta following acute and chronic exposure to copper and cadmium. Arch Environ Contam Toxicol 23:420–425

    Article  PubMed  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • White AK, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    Article  CAS  Google Scholar 

  • Xia JR, Li YJ, Lu J, Chen B (2004) Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bull Environ Contam Toxicol 73:979–986

    Article  PubMed  CAS  Google Scholar 

  • Yokoya NS, Necchi O Jr, Martins AP, Gonzalez SF, Plastino EM (2007) Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J Appl Phycol 19:197–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil, for the use of their scanning and transmission electron microscope. This study was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), and Fundação de Apoio à Pesquisa Cientifica e Tecnológica do Estado de Santa Catarina (FAPESC).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder C. Schmidt.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Zenilda L. Bouzon and Eder C. Schmidt should be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzon, Z.L., Ferreira, E.C., dos Santos, R. et al. Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro. Protoplasma 249, 637–650 (2012). https://doi.org/10.1007/s00709-011-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0301-6

Keywords

Navigation